The Objeci-
~_ Oriented Tuiorial
Series: Part Il

e

By

=

OBJECT VS. RELATIONAL

In the May issue of Data
Management Review, we continued our
exploration of object-oriented data
base management techniques. The
information in the first two install-
ments of this series provided an
overview of the basic ingredients in the
Object-Oriented (O0) paradigm. But
the data base world these days is decid-
edly relational. What are the major dif-
ferences between Object Data Base
Management System (ODBMS) and
Relational Data Base Management
System (RDBMS) technologies? Are
there any similarities? Can the two co-
exist or should they be combined? Let's
take a closer look at these questions as
we compare OO technology to rela-
tional technology.

WHY OBJECT-ORIENTED
INSTEAD OF RELATIONAL?

When OO proponents seek to pro-
mote ODBMS over RDBMS, several
arguments are heard over and over.
First and foremost is the ability of an
ODBMS to support complex objects in
an efficient and easy-to-manipulate
form. Examples of complex objects
would be bill of materials hierarchies,
CAD diagrams or multimedia BLOBs.
Although some relational data bases
can process these types of objects, sel-
dom is it easy or efficient to do so.
Imagine trying to use DB2 to store pic-
tures in VARGRAPHIC columns or to
explode a BOM hierarchy from a fully

20 DATA MANAGEMENT REVIEW/ AUGUST 1993

raig S. Mullins ™,

\

normalized table and you'll get the
idea.

OO proponents also tout ODBMS
products as able to resolve the
impedance mismatch problems
encountered with RDBMS products.
Impedance mismatch refers to the dif-
ference between the declarative, set-
level operation of relational data base
query languages (such as SQL) and the
procedural, record-level operation of
typical third generation programming
languages, such as COBOL or C. When
accessing a relational data base, a typi-
cal application will require embedding
SQL within a 3GL. Because the two
languages operate at different levels, a
mechanism is required to resolve the
difference. (In DB2, this mechanism is
called a cursor.) On the other hand,
access to data in an ODBMS is coded
using an OO programming language
(such as C++ or Smalltalk), so no
impedance mismatch is encountered.
All operations are at the record level.

And objects within an ODBMS are
organized more closely to the way in
which we view them in the real world.
For example, consider the portion of a
data model shown in Figure 1. This is
an entity type hierarchy. The physical
implementation of such a hierarchy is
often difficult. The following character-
ize how you would view this relation-
ship as an ODBMS or a RDBMS:

* ODBMS: implement one object of
class VEHICLE, and three objects,

AUTOMOBILE, PLANE and

MOTORCYCLE based upon the
class VEHICLE; relationships are
established by inheritance from
VEHICLE to the subordinate classes
and each class will inherit the meth-
ods coded for vehicle; or

e RDBMS: implement four separate
tables, one each for VEHICLE,

AUTOMOBILE, PLANE and

MOTORCYCLE; code the appropri-

ate referential integrity; and code

different algorithms to access each.

Finally, RDBMS products do not
provide encapsulation or abstract data
types. With encapsulation, reusability
is increased. And abstract data types
enable data base designers to easily
implement correct and appropriate
data stores for the applications being
developed. See Figure 1.

In general, by raising the level of
abstraction, ODBMS products make it
easier for developers to design and
physically implement a logical data
model using an ODBMS.

THE RELATIONAL ARGUMENTS

The relational proponents have
counterpoints to each of the above OO
points. Let's take them one by one.
First, there is no reason why RDBMS
products cannot be extended to sup-
port complex objects. For example:
¢ Couldn't multiple tables be connect-

ed together to form a complex

object? Consider an object such as an

ORDER in an Order Entry system.

Typically, orders are composed of a

single ORDER_HEADER row, multi-

ple ORDER_DETAIL rows and possi-
bly ORDER_DESCRIPTION rows. 1f
an RDBMS could enable users to

access all of this information with a

single operation, lock all tables at the

object (ORDER) level, and enforce
integrity across all rows for each

ORDER key, wouldn't this serve the

same purpose as complex objects?

* Do multimedia objects such as
BLOBs or sound have to be stored
directly in the data base? Can't the
data base point to some external
medium on which the multimedia
objects are stored? And wouldn't
relational access be relatively easy to
implement for this?

* Couldn’t an operation be added to
SQL (or any other relational data
base query language for that matter),
to explode a BOM hierarchy from a
normalized table? And with the
appropriate structure, say a linked
list that traverses the hierarchy,
wouldn’t performance be just fine?
And what of impedance mismatch? A

relational proponent would claim that
0O technology “solves” the impedance
mismatch “problem” by going back-
wards in time to the days of COBOL
and record-by-record access. It is no
longer possible then, to access many
rows (or records, or whatever) with one
operation; instead, the programmer
would have to go back to coding a read
loop. Is this a solution or does it take
power away from the developer?

The whole abstract data type issue is
simply another name for domains. The
relational model has incorporated the
domain concept since its inception in
1969. Simply because RDBMS vendors
do not support a concept as key to rela-
tional technology as domains, is no rea-
son to knock the relational model.
When RDBMS products fully support
domains (including support for user-
defined data types) then they will be
every bit as effective as ODBMS prod-
ucts with abstract data types. Probably
more so!

Finally, aren’t referential integrity
(R1), FIELDPROCs and EDITPROCs a
type of encapsulation? The issue is “at
what level of abstraction are we talk-
ing?” And RDBMS products can (and
will) be enhanced to support a more
complete form of encapsulation in the
future.

THE PROBLEMS WITH CO

What about the problems with
ODBMS? The relational model is founded
upon the rigorous mathematics of set the-
ory. ODBMS products are not based upon
any standard OO data model. In fact,
there is no OO data model. Oh, sure,
there are certain OO techniques that are
- standard in most ODBMS, but there is no
data model in the way that there is a
Relational Data Model. And there is no
single OO guru such as Dr. Ted Codd,
the originator of relational theory.

And what about simple querying in
an ODBMS? It is not as easy as with
SQL. Why should I have to code a C++
program just to produce a simple
report? An RDBMS will allow me to
produce a quick and dirty report with a
single SQL query.

Finally, do we have to go back to the
days of having the programmer decide
which way is best to access data?
RDBMS products provide systematic
optimization. The data base knows the
most efficient way to access the data.
With an ODBMS, we go backwards yet
again.

OO STRIKES BACK

Well, if RDBMS products can be
extended to incorporate OO techniques,
then ODBMS products can be extended
to provide components of relational
technology. Why can't an ODBMS pro-
vide systematic optimization or a query
language? '

In fact, several ODBMS products on
the market today do, in fact, provide
these capabilities. However, the jury
remains out on just how useful and
efficient systematic OO optimization
will be. If systematic optimization co-
exists with explicitly programmed,
non-systematic optimization (as is typ-
ical in ODBMS products), then confu-
sion will result. What if a programmer
indicates that a specific index is to be
used for a certain query, but that
index was subsequently dropped? Will
the query fail? Will systematic opti-
mization “kick in” at run time?
Supporting both systematic and
explicit access path specification will
result in a horrifying mess for mainte-
nance programmers simply trying to

determine how data is actually being
accessed.

Object SQL is also problematic. For
example, one of the basic tenets of the
relational model is the non-subversion
rule. Loosely translated, this rule states
that data base updates must not be able
to bypass system-defined integrity rules.
An ODBMS defines data integrity rules
using encapsulated methods. If OSQL
permits updates, deletes and inserts,
then it must also enforce all of the
“integrity-related” encapsulated meth-
ods (written in C++, Smalltalk or some
other OOPL) for the objects upon
which it acts. This could prove to be a
difficult task. If modification is not per-
mitted, then arguably one of the basic
benefits of a relational DBMS (set level
modification) will be lost when moving
to an ODBMS.

EMOTIONAL ISSUES

Indeed, these are very emotional
issues. OO technology threatens those
of us content with relational technology
in much the same way that relational
technology threatened IMS and IDMS
experts. So, let’s try to remove the emo-
tion and discuss the basic issues.

The first problem is that there are
currently no complete implementations
of the relational model. For example,
complete domain support is missing
from every RDBMS product on the mar-
ket. Do we compare relational theory
with OO theory or relational reality to
OO reality? Truly, neither is fair, but
then life is not fair.

The second problem we encounter is
that there is no standard OO model.
This must be remedied in order to com-
pare relational theory to CO theory.

Figure 1: Data Model - A Sample Entity Type Hierarchy

VEHICLE

[AUTOMOBILE

-

%
MOTORCYCLE

22 DATA MANAGEMENT REVIEW/ AUGUST 1993

—

And what if we decide to compare
relational reality to OO reality? What is
an ODBMS? Not every DBMS that states
it is object-oriented, actually is an
ODBMS. This is somewhat analogous to
the period in time where every DBMS
was rushing to claim that it was rela-
tional. For example, Adabas, an excel-
lent inverted list DBMS and IDMS, a
CODASYL/Network DBMS, both
claimed to be relational. Adabas with
very few changes, IDMS with many
changes, going so far as to rename itself
IDMS/R. IBM, on the other hand, took
the appropriate approach at the time by
not tinkering with IMS to “relationalize™
it, but by creating a second DBMS, DB2,
that adhered to relational tenets.

Maybe even more difficult is the
question: What is an RDBMS? True, we
have the relational model to fall back
on. But, if we do that, then our answer
must be that there are no RDBMS prod-
ucts because no DBMS supports every
relational capability described in the
model. But surely DB2, SQL/DS,
Informix, Sybase and Ingres are RDBMS
products! But is dBase IV? Probably not.
There is a gray area here that is difficult

to clarify.
BACK TO THE FUTURE

1 suspect that it is impossible to com-
pletely and fairly compare RDBMS and
ODBMS. The differences are just too
great. Although OOP has its roots in the
1960s, just as the relational model does,
ODBMS is a relatively new idea that
really didn’t begin until the 1980s. Is it
fair to compare a mature discipline with
an immature one? We can, however,
make some basic assumptions that will
help data base developers.

But we can say this: relational is not,
and never can be OO. Likewise, OO is
not and never can be relational. But, if
OO cannot be relational, and relational
cannot be OO, what will happen? Here
are my predications:

"o There will always be both true rela-
tional and true object-oriented
DBMS.

¢ Pure relational data bases will contin-
ue to prosper and thrive in the world
of business data processing where
applications like payroll and account-

ing do not generally require complex
objects.

» Usage of pure object-oriented data
bases will continue to grow in those
fields requiring complex objects,
such as CAD and manufacturing,

* Successful relational DBMS products
will seek to incorporate the best com-
ponents of OO technology without
compromising the relational model.

 As RDBMS products begin to support
more and more relational and OO
features, relational data base technol-
ogy will maintain its status as the
industry leader, and increase their
user base even more dramatically.

* Successful object-oriented DBMS
preducts will seek to incorporate the
best features of the relational model,
without compromising the benefits
derived from classes, inheritance and
encapsulation.

* Desperate relational DBMS vendors
will seek to incorporate OO technol-
ogy in a haphazard fashion, not car-
ing whether they subvert the rela-
tional model. Beware of these DBMS
products.

OBJECT RELATIONAL

The immediate future of the DBMS is
what IBM has coined object relational
(OR). A division within IBM, the Data
Base Technology Institute (DBTI), has
been working on a new OR data base
model. Although no products have been
announced, it is a safe bet that IBM will
use the research being done by DBTI in
all of their relational DBMS products
(DB2, DB2/2, DB2/6000, SQL/DS and
SQL/4C0).

What object relational provides is a
marriage of the best relational and
object-oriented concepts. In the long
run, DB2 will be enhanced to incorpo-
rate object-oriented features. So, instead
of a new ODBMS, say DB3, IBM will be
promoting the extension of DB2 to
Object Relational, making, say DB2++.
This is most likely the same path that
other RDBMS vendors (such as Oracle,
Ask and Sybase) will follow.

The best course of action for data
processing professionals who must
work with DBMS software is to keep
up-to-date with the industry. To do that

you will need to read technical publica-
tions (such as Data Management
Review) but also additional literature on
both object-oriented and relational tech-
nology. Even though the RDBMS com-
prise the majority of DBMS products on
the market, few of us who work with
relational technology understand the
entire relational model and what it
implies.

THE ODD COUPLE

The merging of OO and relational
technology promises to be very enter-
taining over the course of the next few
years. Hopefully, it will be done proper-
ly. If not, we will definitely be living
with more of what I call “Odd Couple”
products like IDMS/R. If those OO tech-
niques which do not conflict with the
relational model are incorporated into
RDBMS products, then the object rela-
tional approach will be able to deliver
significant gains in the SDLC. However,
there are many questions that remain to
be answered. Which OO techniques do
not conflict with the relational model?
Can tables inherit properties from one
another? If they do, how should it be
done? This is making relational more
hierarchial! Can code be encapsulated
within tables, within tablespaces, within
data bases? Almost certainly, but how?
And, if we incorporate the best relation-
al techniques into ODBMS products,
which relational techniques do not con-
flict with OO theory?

Well, for the answers to these and
other questions you'll have to wait for
Part IV of the Object-Oriented Tutorial
Series in a future issue of Data
Management Review.

Craig S. Mullins is a
member of the
Technical Advisory
Group at PLATINUM
technology, inc. He has
more than seven years
experience in all facets
of data base systems
development, including
developing and teaching DB2 classes, systems
analysis and design, data base and system
administration and data analysis.

Was this article of value to you? If so, please let us
know by circling Reader Service No. 35.

DATA MANAGEMENT REVIEW/ AUGUST 1993 23

