
 

 

 

 Craig S. Mullins 
Return to Home Page

January / February 1993
  Technical Support Magazine

A Critical Look at the DB2 Catalog 
By Craig S. Mullins

 
The DB2 Catalog can be
considered the brains of DB2.  It
functions as a knowledge
base for all objects defined to DB2. 
With such an important role to play, it is crucial
that the physical
design and implementation of the DB2 Catalog is optimized for not
only
performance, but usability as well.  Realistically
speaking, how does the DB2
Catalog measure up to the standards of database
design?  This article will provide
some insight, along with several juicy tidbits of DB2 Catalog information that
can
increase your day-to-day DB2 productivity.

What is The DB2
Catalog ?

The
DB2 Catalog is composed of 10 table spaces and 38 tables all within a single
database, DSNDB06.  Each DB2 Catalog
table maintains data about a different
aspect of the DB2 environment. 
In that respect, it functions as a data dictionary for
DB2. 
A data dictionary is a tool that supports and maintains meta
data, or data
about data.  The
DB2 Catalog supports and maintains data about the DB2
environment. 
Refer to Figure 1 for a synopsis of the type of information housed in
the
DB2 Catalog.

http://www.craigsmullins.com/


Figure 1. 
Type of
Information Stored in the DB2 Catalog

Area Type of Information
Objects Stogroups,
Databases, Table spaces, Partitions, Tables,

Columns, Views, Synonyms,
Aliases, Indexes, Index Keys,
Foreign Keys, Relationships, Plans,
Packages, DBRMs

Security Database
Privileges, Plan Privileges, System Privileges, Table
Privileges, View
Privileges, Use Privileges

Utility Image
Copy datasets, REORG Executions, LOAD executions,
Object
Organization Efficiency Information

DB2
Catalog Links
and Relationships between the DB2 Catalog tables

How
does it support this data?  Well, the tables of the DB2 Catalog, for the most
part, can
not be modified using standard SQL data manipulation language
statements.  INSERT
statements, DELETE statements, and with a few minor
exceptions, UPDATE
statements can not be used to modify these tables. 
Instead,
the DB2 Catalog operates as a semi-active,
integrated, and non-subvertable data
dictionary. 
Let's define each these three adjectives used to describe the
DB2
Catalog in turn. 

First,
the DB2 Catalog is said to be semi-active.  Just what
does this mean?  Well,
an
active dictionary is built, maintained, and utilized as the result of
the creation of
the objects which are defined to the dictionary. 
In other words, as the user is utilizing
the intrinsic
functions of the DBMS, meta data is being accumulated and populated
in
the active data dictionary.   

The
DB2 Catalog, therefore, is active in the sense that whenever standard
DB2 SQL
is issued, the DB2 Catalog is either updated or accessed. 
However, the degree to
which the information in the DB2 Catalog
is maintained is not 100%. 

Let's
see where the DB2 Catalog operates as an active data dictionary. 
Remember
that there are three types of SQL: DDL, DCL, and DML. 
When DDL is issued to
create DB2 objects such as databases,
table spaces, and tables, the pertinent
descriptive information is
stored in the DB2 Catalog.  Whenever
a CREATE, DROP,
or ALTER statement is issued, information is recorded
or updated in the DB2
Catalog.  Likewise,
with security SQL data control language statements. 
The
GRANT and REVOKE statements cause information to be added
or removed from
DB2 Catalog tables. 
Data manipulation language SQL statements will utilize the
DB2
Catalog to ensure that the statement accurately references the DB2
objects
being manipulated (i.e.. column names, data types, etc). 



Why
then is the DB2 Catalog classified as only semi-active, and not
completely
active? There is very important information housed in the
DB2 Catalog about the
physical organization of DB2 objects. 
For example, the following type of information
is maintained in
the DB2 Catalog:

How many rows are in a given DB2 table? 
a given DB2 table space?

How many distinct values are in a given DB2 index?

What is the physical order of the rows in the table for a
certain set of keys?

Many other types of organizational data are stored in the
DB2 Catalog as well.

This
information is populated by means of the DB2 RUNSTATS utility. 
A truly active
data dictionary would update this information as
data is populated in the application
table spaces, tables, and indexes. 
RUNSTATS would not be needed. 
This was
deemed to be too costly, and for the time-being,
rightly so.  Therefore, as
of now, the
DB2 Catalog is only semi-active. 
When processor speed, memory usage, and
external storage
devices are optimized to the point where this type of statistical
information can be updated on the fly, the DB2 Catalog may then be
able to be
converted to be completely active.

I
also stated that the DB2 Catalog acted as an integrated
dictionary.  By this I
mean
that DB2 is inoperable without the DB2 Catalog. 
The DB2 Catalog and the DB2
DBMS are inherently bound together;
neither having purpose or function without the
other. 
The DB2 Catalog without DB2 defines nothing; DB2 without the
DB2 Catalog
has nothing defined upon which it may operate.

The
final adjective used to classify the DB2 Catalog is non-subvertable. 
This
simply means that the DB2 Catalog is updated as DB2 is
used by standard DB2
features.  It is not possible to update the DB2 Catalog behind DB2's
back.  For
example, assume
that I create a table with twenty columns. 
I could not subsequently
update the DB2 Catalog to indicate
that the table had fifteen columns instead of
twenty, without using
standard DB2 data definition language SQL statements to drop
and
re-create the table as desired.  The
DB2 Catalog and the object that it defines
are always in sync.

An Exception to the
Rule



As
with most things in life, there are exceptions to the basic rule that
SQL data
manipulation language can not be used to modify DB2 tables. 
It is possible to
modify certain columns used by the DB2
optimizer pertaining to the physical
organization of table data. 
These columns are outlined in Figure 2.

Figure 2. 
Updateable
DB2 Catalog Columns

DB2
Catalog Table Column Description Update? Used
by
Optimizer

SYSIBM.SYSCOLUMNS LOW2KEY second
lowest value for
the column

Y Y

HIGH2KEY second
highest value
for the column

Y Y

COLCARD number
of distinct
values for the column

Y Y

FOREIGNKEY indicates
if column
contains BIT DATA

Y N

SYSIBM.SYSFIELDS EXITPARM non-uniform
distribution
column value

N Y

EXITPARML (percentage
* 100) that
the value contained in
EXITPARM exists
within the column

N Y

SYSIBM.SYSINDEXES CLUSTERRATIO percentage
of rows in
clustered order

Y Y

CLUSTERED whether
or not the table
space is clustered

N Y

FIRSTKEYCARD number
of distinct
values for the first
column of the
index key

Y Y

FULLKEYCARD number
of distinct
values for full index key

Y Y

NLEAF number
of active leaf
pages

Y Y

NLEVELS number
of index b-tree
levels

Y Y

SYSIBM.SYSTABLES CARD number
of rows for a
table

Y Y

NPAGES number
of pages used
by the table

Y Y

PCTPAGES percentage
of table
space pages that
actually
contain rows
for this table

Y Y

SYSIBM.SYSTABLESPACE NACTIVE number
of allocated
table space pages

N Y



It
is important to note that none of
these columns relate to the actual
definition of any
DB2 objects. 
They are statistical columns
and DB2 permits them to be updated
only
to enable analysts to influence
the DB2 optimizer to enhance SQL
performance.
 

The Benefits of an
Active Catalog 

The
presence of an active catalog is a
boon to the DB2 developer. 
The DB2 Catalog
is always
synchronized to each actual
application database.  One can be assured,
therefore, that information retrieved
from the DB2 Catalog is 100%
accurate. 
Since
the DB2 Catalog is
composed of DB2 tables (albeit
modified somewhat for
performance),
it is possible to query these tables
using standard SQL. 
The hassle of
documenting
physical database structures is
handled by the active DB2 Catalog
and
the power of SQL. 
A whole slew of useful DB2
Catalog queries can be issued by
DB2
users to determine such things as
table structure, column data types,
database
organization, and just
about anything else you may need to
know about DB2 objects.

DB2 Catalog Structure

The
DB2 Catalog is structured as DB2
tables. 
However, they are not
standard DB2
tables. 
In reality, many of the DB2
Catalog tables are tied together
hierarchically, not
unlike an IMS
database. 
This is accomplished by means
of a special type of
relationship,
called a link
in DB2 terminology. 
A link can be thought of as a
type of
parent-child relationship.  These links physically exist between rows within the DB2
Catalog tables. 
One can determine the nature
of these links by querying the DB2
Catalog table, SYSIBM.SYSLINKS. 
This single DB2 Catalog table
stores the
pertinent information
defining the relationships between
other DB2 Catalog tables. 
To view this information
issue the following SQL statement:

                       
SELECT         
PARENTNAME, TBNAME, LINKNAME,
                                               
CHILDSEQ, COLCOUNT,
INSERTRULE

                       
FROM            
SYSIBM.SYSLINKS

                       
ORDER BY    
PARENTNAME, CHILDSEQ

This
information can be used to construct
the physical composition of the DB2
Catalog links. 
To accomplish this keep the
following rules in mind:

           
The PARENTNAME is the name of the
superior, or parent table in the
hierarchy.

           
TBNAME is the name of the
subordinate, or child table in the
hierarchy.



           
The CHILDSEQ and COLCOUNT columns
refer to the clustering and
ordering
of the data within the relationship.

           
The INSERTRULE determines the order
in which data will be inserted into
the relationship. 
This concept is very similar
to the insert rule that is defined
for IMS databases. 
Valid insert rules are shown
in Figure 3.

Figure
3.  DB2
Link Insert Rules

Insert
Rule

Meaning  Description

F FIRST Insert
new data values as the first
data value for the
relationship.

L LAST Insert
new data values as the
last data value for the
relationship.

O ONE Permit
only one data value for
the relationship.
U UNIQUE Do
not allow duplicate
data values for the
relationship.

So,
to understand how links
work, let's examine the
DB2 Catalog link between
SYSIBM.SYSTABLESPACE and
SYSIBM.SYSTABLES. 
The link named
DSNDS#DT defines this
relationship. 
DB2 will store
pointers within the rows
of
these tables to
maintain this
relationship. 
Consider the
table space and tables as
shown in Figure 4.

Figure 4. 
Tables Defined to a Table space

  
 

A
user defines a new
table space with three new
tables. 
This will be
recorded in the
appropriate DB2 Catalog
tables, SYSTABLESPACE and
SYSTABLES. 
In addition,
each
row inserted into the DB2
Catalog tables will also
contain forward and
backward pointers defining
the link. 
There are no link
pointers stored in the
user



table rows. 
A forward pointer
moves forward in the link
and a backward pointer
moves backward in the
link. 

To
more clearly illustrate
let's return to our
example. 
The table space row
in
SYSTABLESPACE for
TSUSR01 will contain a
forward pointer to the
first table row,
in this
instance, for TB_USR_1. 
Each row in
SYSTABLES will contain a
forward
pointer to the
next table and a backward
pointer to the previous
table. 
The backward
pointer for the first
table row and the forward
pointer for the last table
row point to the
parent
row. 
Refer to Figure 5
for a pictorial
representation of this.

Figure 5. 
DB2
Link Pointers

These
pointers define the links
that enable DB2 to
efficiently process DDL. 
For
example,
without explicit pointers,
an operation like dropping
a table space would be
much
more inefficient than it
is today. 
Instead of
traversing the link list
using the
pointers to drop
the table space and all
subordinate objects (such
as tables,
columns,
foreign keys, views,
indexes, etc), DB2 would
have to scan each
table
space or, at best,
use available indexes.

DB2 Catalog Indexes



Did
you know that DB2 indexes
are not used by internal
DB2 operations? 
For
example, when
the BIND command queries
the DB2 Catalog for syntax
checking
and access path
selection, only the
internal DB2 Catalog links
will be utilized. 
Indexes on the DB2 Catalog can be used when SQL SELECT
statements are issued
to
query indexed tables in
the DB2 Catalog. 
To enhance the
performance of your
DB2
Catalog queries, be sure
to always include
predicates containing
indexed
columns whenever
possible.

The
Physical Design of the DB2
Catalog

Now
that we understand the
basic make-up of the DB2
Catalog, let's examine its
design. 
Although a very
credible job of database
design was performed for a
relational system that had
its beginnings in the
1970's[1],
the DB2 Catalog is not
without its faults. 
The actual physical
definition of the DB2
Catalog leaves much to
be
desired in certain key
areas. 
Design flaws exist
in the areas of
normalization,
data type
consistency, redundant
data and semantic issues.

Insufficient
Normalization

The
bare minimum for
implementation of a
relational table is first
normal form (1NF),
which
is defined in Figure 6. 
This is important
in order for the
relational operators to
function properly when
used against a table. 
According to the
definition in Figure 6,
several DB2 Catalog tables
are not in 1NF.
 

Figure 6. 
First
Normal Form

An
entity is said to be in
first normal form (1NF)
if, and only if, all of
its
attributes are
atomic (single-valued),
unique in meaning, and
non-
repeating.

For
example, as of DB2 V2.3,
the SYSIBM.SYSFIELDS table
is not in first normal
form because it contains
non-atomic data. 
Some rows contain
information about
field
procedures, whereas other
rows contain non-uniform
distribution statistics
(NUDS). 
The contents of the
row is determined by the
data values contained in
specific columns of the
table. 
This is a severe
design flaw. 
What makes it even
worse is that this anomaly
did not occur until DB2
V2.2, when non-uniform
distribution statistics
were first stored by DB2. 
The proper response
would have
been to create
a new table where these
values could be stored,
leaving
SYSIBM.SYSFIELDS
to record the field
procedure information. 
With DB2 Version 3,
the most recent release of
DB2, this situation has
been rectified by placing
the
NUDS into separate
tables instead of
SYSIBM.SYSFIELDS. 
These tables are
SYSIBM.SYSCOLDIST and
SYSIBM.SYSCOLDISTSTATS.



Another
violation of first normal
form exists within the
SYSIBM.SYSCOPY table. 
Volume serial
numbers for image copy
datasets are strung
together as a repeating
group within a single
column, DVOLSER. 
This is
a design flaw, although a
minor
one, because users
rarely need to query these
values.

Finally,
although it is probably
nitpicking, all of the DB2
Catalog tables which store
DB2 authority are not
truly in first normal
form. 
Repeating groups of
authorization
columns
exist in each of these
tables. 
Though not quite as
bad as storing multiple
values in a single column
as occurs in
SYSIBM.SYSCOPY,
technically speaking, this
is also a violation of
first normal form.

Lack
of Data Type Consistency

The
relational model provides
for the very useful
concept of domains. 
It is generally
accepted that physical
database design practice
follow the domain concept
whenever possible (given
the technical limitations
of the database being
used). 
Minimally, to mimic
domain usage with DB2, the
database designer should
standardize their design,
using specific data types
and lengths for specific
domains
of data.  The DB2 Catalog does not adhere to this rule of thumb as well
as it should.

For
example, tables containing
columns defined as date,
time, and timestamp data
types are defined
inconsistently throughout
the DB2 Catalog. 
Consult Figure 7
for a
complete listing of
all the different date and
time formats used in the
DB2 Catalog. 
Notice that the DB2
Catalog never stores dates
in DB2's date format and
never
stores time data in
DB2's time format. 
Even stranger,
there are three different
timestamp formats used:
DB2's TIMESTAMP data type,
an eight character
internal
timestamp format,
and a twelve character
internal timestamp format. 
This sure
makes it
difficult to query,
compare, and record DB2
date, time, and timestamp
data.

Figure 7. 
Date
and Time Data Types in the
DB2 Catalog Tables

DB2
Catalog Table Column Data
Type
SYSIBM.SYSCOLAUTH DATEGRANTED CHAR(6)
yymmdd

TIMEGRANTED CHAR(8)
hhmmssth

SYSIBM.SYSCOPY TIMESTAMP TIMESTAMP
SYSIBM.SYSDATABASE TIMESTAMP TIMESTAMP
SYSIBM.SYSDBAUTH DATEGRANTED CHAR(6)
yymmdd

TIMEGRANTED CHAR(8)
hhmmssth

SYSIBM.SYSDBRM TIMESTAMP CHAR(8)
FOR
BIT
DATA
(int)

PRECOMPTIME CHAR(8)
hhmmssth



PRECOMPDATE CHAR(6)
yymmdd

SYSIBM.SYSPACKAGE TIMESTAMP
(created) TIMESTAMP
BINDTIME
(last
bound) TIMESTAMP

PCTIMESTAMP
(precompile)

TIMESTAMP

SYSIBM.SYSPACKAUTH TIMESTAMP TIMESTAMP
SYSIBM.SYSPACKLIST TIMESTAMP TIMESTAMP
SYSIBM.SYSPLAN BINDDATE CHAR(6)
yymmdd

BINDTIME CHAR(8)
hhmmssth

SYSIBM.SYSPLANAUTH BINDDATE CHAR(6)
yymmdd
BINDTIME CHAR(8)
hhmmssth

TIMESTAMP CHAR(12)
FOR
BIT
DATA
(int)

SYSIBM.SYSRELS TIMESTAMP TIMESTAMP
SYSIBM.SYSRESAUTH TIMESTAMP CHAR(12)
FOR
BIT
DATA

(int)
DATEGRANTED CHAR(6)
yymmdd

TIMEGRANTED CHAR(8)
hhmmssth

SYSIBM.SYSSTOGROUP SPCDATE CHAR(5)
yyddd
SYSIBM.SYSTABAUTH DATEGRANTED CHAR(6)
yymmdd

TIMEGRANTED CHAR(8)
hhmmssth

TIMESTAMP CHAR(12)
FOR
BIT
DATA
(int)

SYSIBM.SYSUSERAUTH DATEGRANTED CHAR(6)
yymmdd
TIMEGRANTED CHAR(8)
hhmmssth

TIMESTAMP CHAR(12)
FOR
BIT
DATA
(int)

Reliance
on
Links

Though
the
concept
of
links
is
not
overtly
negative,
the
query
impact
of
wholesale
reliance
upon
links
can
be
extremely
negative. 
Simply
stated,
every
relationship
that
is
physically
implemented
with
a
link
should
be
logically
represented
in
the
DB2
Catalog. 
Let's
take
a
look
at
an
example
of
over-reliance
upon
links.

DB2
records
information
about
storage
groups
in
two
DB2
Catalog
tables:
SYSSTOGROUP
and
SYSVOLUMES. 
A
link,
namely
DSNSS#SV,
records
the
relationship
between
these
two
tables.  There is one row in SYSSTOGROUP for



each DB2 storage group,
and
one
to
many
rows
in
SYSVOLUMES
for
each
DASD
volume
assigned
to
the
storage
group.
 

So
far,
so
good. 
However,
there
is
an
ordering
to
the
volumes
assigned
to
the
storage
groups
that
can
never
be
ascertained
simply
by
querying
these
two
tables. 
When
a
DB2
storage
group
is
created,
the
volumes
are
inserted,
in
order,
into
SYSVOLUMES,
according
to
the
definition
of
the
DSNSS#SV
link. 
This
link
is
defined
as
shown
below:

                                                                               
CHILD    
COL        
INSERT


PARENTNAME         
TBNAME            
LINKNAME    
SEQ      
COUNT   
RULE


SYSSTOGROUP       
SYSVOLUMES  
DSNSS#SV      
1          
0            
L

So,
we
can
see
that
with
an
insert
rule
of
L,
volumes
will
be
inserted
such
that
the
volumes
physically
listed
first
in
the
DDL
will
be
inserted
into
the
DB2
Catalog
first
on
the
linked
list. 
Subsequent
volumes
will
be
inserted
at
the
end
of
the
link
list. 
But
this
list
will
be
traversed
using
the
link
only
when
DB2
is
performing
its
internal
operations. 
So
when
an
object
is
assigned
to
a
STOGROUP,
DB2
will
traverse
the
linked
list
in
the
order
that
it
was
created
to
assign
the
object
to
a
volume. 
But,
when
an
end
user
issues
a
query
against
the
SYSVOLUMES,
the
volumes
will
not
be
returned
in
any
specific
order. 
The
order
simply
can
not
be
determined
using
SQL. 
The
solution
would
be
to
add
a
SMALLINT
column,
say
VOLNO,
storing
the
order
that
is
physically
maintained
by
the
linked
list. 
This
will
allow
end
users
to
"know"
what
DB2
"knows."

Redundant
Data

It
is
also
a
good
design
practice
to
avoid
redundant
data. 
When
redundant
data
is
stored,
two
possible
negative
ramifications
may
occur:

1.  
Users
of
the
data
may
become
confused
as
to
the
difference
between
the
redundant
data
items,
possibly
ignoring
or
by-passing
the
useful
data



2.  
The
redundant
data
items
may
not
be
kept
synchronized,
further
complicating
not
only
end
user
access,
but
also
the
integrity
of
the
database

Several
tables
contain
redundant
data
that
is
probably
not
required
even
for
performance
reasons. 
For
example: 

        The
SYSIBM.SYSSTMT
and
SYSIBM.SYSDBRM
tables
carry
both
the
PLNAME
and
PLCREATOR
column
when
PLNAME
is
sufficient
to
identify
a
plan
(as
plan
names
are
unique
within
a
DB2
subsystem). 
There
is
really
no
logical
reason
to
carry
the
PLCREATOR
column
in
the
SYSIBM.SYSSMT
table
(however,
there
may
be
a
technical
implementation
or
performance
reason
that
I
am
not
aware
of).

        The
SYSIBM.SYSCOPY
table
and
all
of
the
authority
tables
(i.e..
SYSPLANAUTH,
SYSDBAUTH,
etc.)
carry
both
a
TIMESTAMP
columns
as
well
as
a
DATE
and
TIME
column. 
This
is
unnecessary
as
a
timestamp
will
suffice
to
uniquely
identify
a
point
in
time. 
To
be
fair
though,
the
documentation
states
that
the
DATE
and
TIME
columns
should
not
be
used
as
they
will
be
eliminated
in
a
future
release
of
DB2.

        Data
redundancy
is
also
created
by
the
manner
in
which
views
are
stored
in
the
DB2
Catalog. 
Two
tables
(SYSIBM.SYSVTREE
and
SYSIBM.SYSVLTREE)
are
used
to
hold
the
view
parse
tree,
when
one
properly
designed
table
would
have
sufficed.

Semantics

There
is
a
semantic
problem
with
the
DB2
Catalog
in
that
the
tables
and
columns
are
not
functionally
named. 
The
name
of
a
table
should
convey
the
contents
of
its
data. 
Several
good
examples
of
the
non-intuitive
manner
in
which
DB2
Catalog
tables
are
named
follow:

      SYSIBM.SYSVIEWS
does
not
contain
one
row
per
DB2
view,
but
instead
may
contain
multiple
rows
per
view. 
SYSIBM.SYSVTREE
contains
the
parse
tree
for
the
view
but
will
only
contain
one
row
per
each
view. 
Long
parse
trees
are
handled
by
adding
rows
to
an
overflow
table
named
SYSIBM.SYSVLTREE. 
This
is
anything
but
obvious
given
the
table
names. 
 



      SYSIBM.SYSKEYS
contains
one
row
for
every
column
of
every
DB2
index.  It does not contain primary or foreign key information as
could
easily
be
misconstrued
given
the
table's
name. 
 

      Several
columns
are
also
inappropriately
named.
 For example who would
guess that STNAME actually refers to a
view
name
or
that
DNAME
refers
to
a
plan
name.

I
also
contend
that
the
column
names
throughout
the
DB2
Catalog
should
be
named
much
more
uniformly. 
Why,
for
example,
is
the
column
for
the
table
name
attribute
called
NAME
in
SYSIBM.SYSTABLES,
TBNAME
in
SYSIBM.SYSCOLUMNS,
and
TNAME
in
SYSIBM.SYSCOLAUTH? 
Surely
a
more
standardized
and
uniform
column
naming
convention
could
have
been
used.

You
might
want
to
consider
creating
views
of
all
DB2
Catalog
tables
for
ad
hoc
access. 
These
views
could
contain
standardized,
more
user-friendly
names
for
all
DB2
Catalog
tables
and
columns.

DB2 Catalog
Performance
Hints

Design
considerations
aside,
we
must
learn
to
make
the
best
of
the
DB2
Catalog
as
it
is
currently
implemented.  The final section of this article will present a series of
performance
tuning
tips
and
techniques
for
the
DB2
Catalog.

Plans
and
Packages

Use
packages
instead
of
multiple
DBRMs
bound
into
one
plan,
especially
when
you
have
a
DBRM
for
a
common
routine
that
is
referenced
by
many
programs;
this
will
reduce
the
size
of
SYSIBM.SYSSTMT.

Be
sure
to
free
old
versions
of
packages
that
will
never
be
used;
a
general
rule
of
thumb
is
to
free
the
version
when
the
load
module
no
longer
exists
(or
can
no
longer
be
restored). 
Every
version
of
every
package
is
stored
in
the
DB2
Catalog
until
it
is
either
freed
or
dropped. 
Failure
to
clean
up
old
package
versions
will
result
in
an
ever-expanding
DSNDB06.SYSPKAGE
table space.

FREE
all
unused
plans
and
packages;
when
a
program
will
no
longer
be
executed,
free
its
plan
or
package. 
This
will
reduce
the
size
not
only
of
the
DB2
Catalog
but
also
of
the
DB2
Directory
SCT01
and
SPT02
"tables".



Views

Do
not
use
one
view
per
base
table. 
This
provides
no
program
insulation
as
commonly
believed,
but
does
increase
the
size
of
four
DB2
Catalog
tables. 
These
are
SYSIBM.SYSVIEWS,
SYSIBM.SYSVIEWDEP,
SYSIBM.SYSVTREE,
and
SYSIBM.SYSVLTREE.

Drop
any
unused
views. 
This
can
be
determined
by
querying
the
DB2
Catalog
SYSIBM.SYSPLANDEP
and
SYSIBM.SYSPACKDEP
tables. 
If
a
given
view
does
not
appear
in
either
of
these
tables,
then
no
static
SQL
accesses
the
view. 
Be
careful
though
not
to
drop
views
being
queried
by
ad
hoc
users
or
programs
containing
dynamic
SQL. 
The
following
query
can
be
used
to
determine
if
any
QMF
queries
access
a
given
table:

     
SELECT      DISTINCT OWNER, NAME, TYPE
FROM         
Q.OBJECT_DATA
WHERE      
APPLDATA
LIKE
'%viewname%';

Image
Copies

Run
the
MODIFY
RECOVERY
utility
to
remove
old
image
copies
from
the
SYSIBM.SYSCOPY
table. 
I
have
seen
shops
that
never
executed
this
utility,
thereby
maintaining
a
list
of
every
image
copy
ever
taken
since
the
DB2
subsystem
was
established. 
How
would
you
like
to
be
the
DBA
performing
a
RECOVER
using
an
image
copy
from
four
years
ago? 
If
you
do
nothing
else
suggested
in
this
article
develop
a
procedure
for
keeping
up-to-date
image
copies
and
purging
image
copies
that
can
never
reasonably
be
expected
to
be
used.

Authority

     
DB2
allows
duplicate
entries
in
all
of
the
authority
tables. 
For
example,
issuing
the
following
two
SQL
statements
will
cause
two
rows
recording
that
USER1
has
execute
authority
on
PLAN1
to
be
inserted
into
SYSIBM.SYSPLANAUTH.

                 
GRANT
EXECUTE
ON
PLAN1
TO
USER1;

                 
GRANT
EXECUTE
ON
PLAN1
TO
USER1;



     
Although
DB2
should
probably
monitor
for
this
condition
and
prohibit
duplicate
rows,
it
is
a
fact
of
life
that
it
currently
does
not. 
For
this
reason
use
due
diligence
to
avoid
duplicate
authorization
granting. 
For
example,
avoid
automatically
granting
plan
and/or
package
execution
authority
immediately
after
binding.

Reduce
the
size
of
the
authority
tables
by
granting
multiple
authorizations
using
a
single
SQL
GRANT
statement. 
Every
GRANT
execution
causes
at
least
one
new
row
to
be
inserted
into
an
authority
table. 
By
judiciously
coding
your
GRANT
statements,
you
can
avoid
undue
authority
table
growth.
For
example,
the
two
scenarios
in
Figure
8
are
functionally
equivalent,
but
scenario
1
will
cause
two
rows
to
be
inserted
into
SYSIBM.SYSPLANAUTH,
one
for
each
GRANT. 
Scenario
2
will
cause
only
one
row
to
be
inserted,
recording
both
authorities
in
a
single
row.

Figure
8.  DB2 Authority Scenarios

Scenario
1 Scenario2
GRANT
EXECUTE
ON
PLAN1
TO
USER1;

GRANT
BIND,
EXECUTE
ON
PLAN1
TO
USER1;

GRANT
BIND
ON
PLAN1
TO
USER1;

General
Ideas

Drop
all
unused
objects. 
This
includes
all
unused
STOGROUPs,
databases,
table
spaces,
tables,
views,
aliases,
synonyms,
and
indexes.

Free
all
unused
plans
and
free
or
drop
all
unused
packages.

Consider
removing
the
distribution
statistics
from
SYSFIELDS
for
evenly
distributed
tables. 
This
can
be
accomplished
with
the
MODIFY
STATISTICS
utility.

Do
not
forget
to
execute
RUNSTATS
on
your
DB2
Catalog
table spaces. 
These
table space
are
listed
below:

DSNDB06.SYSCOPY DSNDB06.SYSDBASE
DSNDB06.SYSDBAUT DSNDB06.SYSGPAUT
DSNDB06.SYSGROUP DSNDB06.SYSPKAGE
DSNDB06.SYSPLAN DSNDB06.SYSSTR



DSNDB06.SYSUSER DSNDB06.SYSVIEWS

For
DB2
Version
3,
the
SYSIBM.SYSSTATS
table space
has
been
added. 
It
contains
the
statistically-oriented
DB2
Catalog
tables.

     
Although
the
DB2
Catalog
table spaces
can
not
be
reorganized
without
reallocating
them,
the
indexes
on
the
DB2
Catalog
tables
can
be
reorganized
using
the
RECOVER
utility. 
Be
sure
to
monitor
all
DB2
catalog
indexes
and
reorganize
them
using
RECOVER
whenever
necessary.

Periodically
produce
DB2
Catalog
reports
to
assist
your
clean
up
efforts.

Synopsis

Hopefully
this
article
has
presented
some
food
for
thought
in
terms
of
what
the
DB2
Catalog
should
be
and
how
to
best
optimize
your
usage
of
the
DB2
Catalog
as
it
currently
exists. 
The
DB2
Catalog
is
a
very
useful
tool
for
all
users
of
DB2;
use
the
information
and
techniques
contained
in
this
article
to
make
your
usage
of
the
DB2
Catalog
more
efficient
and
to
make
your
day
more
productive!




[1]
DB2
is
based
on
the
relational
prototype,
System
R,
which
IBM
initiated
in
the
early
1970's.




 
From Technical Support,  Jan and
Feb 1993. 
 
© 2001, 1993 Craig S. Mullins, All rights reserved.
Home.   




http://www.craigsmullins.com/

