Craig S. Mullins

Stored Procedure

Extreme

Guidelines for DB2

Craig shows you how to implement stored procedures intelligently
to decrease your overhead costs.

OTH OF THE MAJOR IMPLE-
J mentations of DB2 (DB2 for MVS

and DB2 for Common Servers)
provide support for stored procedures.
In this article, I discuss tips and tricks
for implementing useful stored proce-
dures, as well as guidelines for proper
stored procedure administration.

WHAT IS A STORED
PROCEDURE?

Stored procedures are specialized pro-
grams that are stored in a relational data-
base management system. The motivat-
ing reason to use stored procedures is to
enable developers to relocate application
code from the client to the database serv-
er. One client request can therefore in-
voke multiple SQL statements and, as a
result, overhead costs will decrease.

Stored procedures are similar to other
database objects such as tables, views, and
indexes in that they are managed and
controlled by (or within) the RDBMS.
Stored procedures may also physically re-
side in the RDBMS (although this struc-
ture is not always the case for DB2).
However, stored procedures are not
“physically” associated with any other ob-
ject in the database. Stored procedures
can access and/or modify data in one or
more tables; think of them as “programs”
that “live” in the RDBMS.

A stored procedure must be directly
and explicitly invoked before it can be
executed. In other words, stored proce-
dures are not event-driven. In contrast,
consider the concept of database triggers,
which are event-driven and never ex-
plicitly called. Triggers are automatically

12 DB2

PREMIER ISSUE, WINTER 1996

executed — a process sometimes referred
to as “firing” — by the RDBMS as the re-
sult of an action. Stored procedures, how-
ever, are never automatically invoked.

WHY USE STORED
PROCEDURES?
Reuse. The predominant reason for us-
ing stored procedures is to promote code
reusability. Instead of replicating code
on multiple servers, stored procedures
enable code to reside in a single place:
the database server. Stored procedures
can then be called from client programs
to access DB2 data. This process is pre-
ferable to cannibalizing sections of pro-
gram code for each new application you
must develop. By coding a stored proce-
dure, the logic can be invoked by multi-
ple programs instead of being recoded
into each new process every time the
code is required. When implemented
wisely, stored procedures are useful for
reducing the overall code maintenance
effort. Because the stored procedure ex-
ists in one place, changes can be made
quickly without requiring propagation
of the change to multiple workstations.

However noble the goal of reusable
components, simply mandating the use
of stored procedures will not ensure that
goal. Documentation and management
support (perhaps even coercion) is nec-
essary to ensure successful reuse. The ba-
sic maxim applies: “How can I reuse it if
I don’t know it exists or I don’t know
what it does?”

Consistency. An additional benefit
of stored procedures is increased con-
sistency. If every user with the same re-

quirements is calling the same stored
procedures, then the DBA can be assured
that everyone is running the same exact
code. If each individual user is using his
or her own individual and separate code,
no assurance can be given that everyone
is using the same logic. In fact, incon-
sistencies will almost certainly occur.
Data Integrity. In addition, stored
procedures can be coded to support data-
base integrity constraints. Column vali-
dation routines can be coded into stored
procedures that are called each time an
attempt is made to modify the column
data. Of course, this setup will only catch
planned changes that are issued through
applications that utilize the stored
procedure. Ad hoc changes will not be
checked; ad hoc changes require triggers
that can call the stored procedure (DB2
for MVS does not yet support triggers).
Performance. Another common rea-
son to employ stored procedures is to en-
hance performance. A stored procedure
may result in enhanced performance be-
cause it is typically stored in parsed (or
compiled) format, thereby eliminating
parser overhead. In addition, in a client/
server environment stored procedures will
reduce network traffic because multiple
SQL statements can be invoked with a
single execution of a procedure, instead
of sending multiple requests across the
communication lines. Figure 1 shows a
call to a stored procedure in DB2 for MVS.
The passing of SQL and results occurs
within the SPAS, instead of over the net-
work — as would be necessary without
the stored procedure. Only two network
requests are required: one to request that

Calling a stored procedure.

the stored procedure be run, and one to
pass the results back to the calling agent.

Security. You can use stored proce-
dures to implement and simplify data
security requirements. If a given group
of users requires access to specific data
items, you can develop a stored proce-
dure that returns only those specific data
items. You can then grant access to users
to call the stored procedure, without giv-
ing them any additional authorization
to the underlying objects within the body
of the stored procedure.

Stored procedures provide a myriad
of other useful benefits, including:

* Flexibility. Stored procedures can issue
both static and dynamic SQL statements
and access DB2 and non-DB2 data.

* Ease of Training. DB2 stored procedures
are written in traditional programming
languages that many application pro-
grammers already know.

* Database Protection. Stored procedures
can be developed (they must be for MVS)
to run in a separate address space from
the database engine, thereby eliminating
the possibility of users corrupting the
DBMS installation.

STORED PROCEDURE TIPS
AND TRICKS

On the surface, stored procedures appear
to be a simple and highly effective way to

improve application performance, en-
hance database administration, and pro-
mote code reusability. However, as with
every new database feature, there are
good and bad ways to proceed with im-
plementing stored procedures. Consider
the following caveats before coding stored
procedures at your shop.

Avoid calling stored procedures from
other stored procedures. When one pro-
cedure calls another procedure, the en-
suing structure is called a nested proce-
dure. Nested procedures are difficult to
test and modify. Furthermore, when one
procedure calls another, the likelihood
of reuse decreases as the complexity in-
creases, because the stored procedure that
results is more difficult to understand and
use. Although DB2 does not currently
support nested procedures, it is wise to
avoid nested procedures throughout
RDBMS stored procedure development
(in case IBM changes this restriction in a
future release).

Design and implement only useful stored
procedures. By useful, I mean only those
stored procedures that support a business
rule and are robust enough to perform a
complete task but are not small enough
to be trivial (a two-line procedure) or too
large to be understood (a thousand-line
procedure that performs every customer
function known to the organization). To
be useful, a stored procedure must:

* perform one task and perform it very
well

* correspond to a useful business function
* be documented (including a descrip-
tion of the input, output, and process)

Abways specify parameters at an atomic
level. In other words, every stored proce-
dure parameter must be complete and
non-divisible. When parameters are coded
as non-atomic variable blocks, the stored
procedure logic must parse the block. If
changes to the data cause changes in
length or data type, procedures that use
atomic parameters will be easier to mod-
ify and test.

Be sure to read and understand the lim-
itations and requirements of DB2 stored
procedures. For example, certain state-
ments and commands cannot be issued
from within a stored procedure. DB2 for
MVS stored procedures cannot issue
CALL, COMMIT, ROLLBACK, CONNECT, SET
CONNECTION, and RELEASE; and DB2 for
Common Server stored procedures can-
not issue CALL, CONNECT, SET CONNECT,
RELEASE, CONNECT RESET, CREATE
DATABASE, DROP DATABASE, BACKUP,
RESTORE, and FORWARD RECOVERY.

Ensure that the political aspects of
stored procedure creation, usage, and sup-
port have been adequately determined and
documented prior to implementation. For
example, who will code stored proce-
dures — DBAs or application program-
mers? This decision can vary from shop
to shop based upon the size of the orga-
nization, the number of DBAs, and the
commitment of the organization to
stored procedures. You can make a cred-
ible case that the task should be a cen-
tralized function in order to promote
reusability and documentation.

Once you decide who develops the
stored procedures, you must next decide
who supports them. Stored procedure
support must encompass design and
code review, quality assurance testing,
documentation review, reusability test-
ing, and “on call” support. If a central-
ized group is not “on call” for stored pro-
cedure failures, organizational in-fighting
will probably occur.

Consider a stored procedure devel-
oped by the marketing application staff
that modifies customer information. The
stored procedure is developed, tested,
documented, and migrated to produc-
tion. Because proper reusability guide-
lines were followed, the sales application
staff calls the same stored procedure in
their code. Once in production, the sales
application fails at 2:00 A.M. Who gets
called in to fix the problem? The sales

DB2 13

PREMIER ISSUE, WINTER 1996

C Cobol
GH+! 00 Cobol2

P
Assembler

' Requires APAR PN78797, PTF UN86554,and LE/370V1.4
2 Requires APAR PN78797, PTF UN86554, and LE/370V1.5

WJ 70 languages you must use to write stored procedz.;res for DB2 for

staff argues that the stored procedure was
created by marketing. The marketing staff
argues that their application did not
bomb — sales’ application did. Without
a centralized support function, the ar-
gument could go on all night.

To solve these problems, the role of sup-
porting stored procedures should fall to a
group of professionals skilled in program
development and procedural logic, as well
as SQL and database administration. A
new type of DBA should be defined to
support and manage stored procedures
(and other server code objects) and other
code-related DBA tasks, such as:

* Server Code Object Support: review-
ing, supporting, and possibly even cod-
ing stored procedures, triggers, and user-
defined functions

* Application Program Design Reviews:
reviewing every application program
completely before migrating the code to
a production environment

* Access Path Review and Analysis: us-
ing EXPLAIN and other tools to deter-
mine the type of access chosen by DB2
* SQL Debugging: assisting developers
with difficult SQL syntax and structures

14 DB2

PREMIER ISSUE, WINTER 1996

* Complex SQL Analysis and Rewrite:
tweaking SQL for optimal performance

This new role can be defined as a pro-
cedural DBA. (See Figure 2.) When the
procedural tasks are offloaded from the
traditional, data-oriented DBAs, these
DBAs will be free to concentrate on the
actual physical design and implementa-
tion of databases. This separation of re-
sponsibility should result in much bet-
ter database design and performance.

DB2 FOR MVS TIPS

DB2 for MVS stored procedures must
be written using an LE/370 language.
(See Table 1.) You cannot use VS Cobol
IT to code stored procedures (although
you can call a stored procedure from any
DB2-compatible host language, even
non-LE/370 languages).

If your shop has technical DBAs who
like to code their own administration
tools and performance monitoring ap-
plications, consider using stored proce-
dures to issue DB2 commands and access
trace records using the IFI (Instrumen-
tation Facility Interface). You can develop
generalized procedures that are main-

tained by the DBA and accessed by mul-
tiple programs to start, stop, and display
database objects or analyze IFCIDs and
display performance details.

Remember, DB2 stored procedures can
access flat files, VSAM files, and other files
as well as DB2 tables. In addition, because
stored procedures utilize the Call Attach
Facility (CAF), they can access resources
in CICS, IMS, and other MVS address
spaces. This capability makes them an
ideal vehicle for applications that require
access to both IMS and DB2 databases.

DB2 FOR COMMON
SERVERS TIPS

Stored procedures written for DB2 for
Common Servers must be written using
a traditional programming language.
However, the list of supported languages
differs by platform, which makes it dif-
ficult to develop stored procedures that
are portable across multiple DB2s on dif-
ferent platforms. For AIX and 0S/2, see
the list in Table 2. Note that REXX, al-
though available for AIX, is only sup-
ported under OS/2.

Avoid using the Database Application
Remote Interface (DARI), which was the
stored procedure interface used for DB2
for Common Servers version 1. Although
DARI is still available under version 2,
the standard SQL CALL statement is the
preferable method of invoking stored
procedures because of its compliance
with industry standards.

Always run stored procedures in
“fenced mode.” A fenced stored proce-
dure runs in a separate process from the
database agent processes. In other words,
the stored procedure must accrue addi-
tional communication overhead. How-
ever, fencing protects the database man-
ager’s control structure from an errant
stored procedure command. You can
build stored procedures to run unfenced,
but the potential for damage far out-
weighs any possible performance gains.

PROCEDURAL SQL?

How does DB2’s stored procedure sup-
port differ from the other RDBMS ven-
dors? The most significant difference is
the manner in which the stored proce-
dure is coded. Oracle, Sybase, Microsoft
SQL Server, and Informix let developers
write stored procedures using procedural
extensions to SQL. Each of these lan-
guages is proprietary (the vendor created
and owns the code). In addition, these
languages cannot interoperate with one
another. DB2, on the other hand, requires
that stored procedures be written in tra-
ditional programming languages.

Product Language
DB2 for AIX C

(++
Cobol

Fortran

CorC++

DB2 for 05/2

Cobol

Fortran
REXX

Implementation

[BM XL C Compiler1.2.T0r 1.3
|BM Cfor AlX 3.1

IBM C/Set++ for AlX 2.1 0r 3.1
1BM Cabol Set for AIX 1.1

Micro Focus Cobol 3.1 or later
[BM AIX XL Fortran/6000 2.3

|BM XL FORTRAN for AIX 3.2

IBM C/SET++ for 05/2 2.1

|BM VisualAge C++ for 05/23
|BM Cobol VisualSet for 05/2 1.1
Micro Focus Cobol 3.1 or later
Watcom Fortran 77 32 version 9.5
|BM Procedures Language 2/REXX

| Common Servers.

But what is procedural SQL? One of
the biggest benefits derived from SQL
(and RDBMS products in general) is the
ability to operate on sets of data with a
single line of code. Using a single SQL
statement, multiple rows can be retrieved,
modified, or removed in one fell swoop.
However, this very capability also limits
SQUs functionality. A procedural dialect
of SQL eliminates this drawback through
the addition of looping (do...while),
branching (goto), conditional processing
(if...then...else), and flow of control

|| Languages with which you can write stored procedures for DB2 for

statements. As the ANSI committee works
on creating a standard version of SQL that
includes procedural support, look for
IBM to relent and supply a procedural
version of its SQL dialect.

DATABASIC

IBM also provides an add-on stored
procedure development product named
DataBasic. DataBasic provides facilities
for developing, testing, and maintaining
stored procedures written for DB2 for
AIX and DB2 for OS/2 (support for DB2

for MVS is reportedly in development
and will be provided in the future). Data-
Basic provides a Basic interpreter simi-
lar in functionality to Microsoft Visual
Basic for the development of DB2 stored
procedures. Using DataBasic, developers
can create portable stored procedures (at
least across OS/2 and AIX) in a visual
programming environment.

SYNOPSIS

Although not new to the RDBMS in-
dustry, stored procedures are a powerful
new feature of DB2. They let you execute
multiple data access statements with a
single request. In addition, they are con-
trolled and managed by DB2, providing
a consistent and reusable point of refer-
ence for frequently executed database
code. If implemented effectively, they
promise to be one of the most exciting
and useful features of DB2 development
in a client/server environment. ®

Craig S. Mullins isa frequent contributor
to computer industry publications. His book, DB2
Developer’s Guide (Sams Publishing, 1994), con-
tains DB2 development techniques, tips, and guide-
lines. Craig has over a dozen years experiencein all
facets of database systems development.You can
email Craig at 70410.237@compuserve.com.

Continued from page 11
tionality. This amount, however, will
depend on how the implementation is
phased and on how many users will access
the data. Typically, the implementation
phase might be based on the data load se-
quence or on the data subject area (cus-
tomer, product, risk management, rev-
enue/expenses, and so on). These subject
areas are the building blocks of the data
warehouse that will have a major impact
on the implementation phases. Remem-
ber the phrase: “If you build it they will
come.” Data storage and load cycles are
very expensive. If you load too much data

into the data warehouse, it may become |

underutilized or, worse, not used at all.

« What is the level of data granularity?
This concept identifies whether the data
is stored at a detailed level, summarized
Jevel, or both. The level will be noted in
your architecture document and will drive
a number of other issues. It will impact
whether derived data is calculated each
time for queries or stored in the data
warehouse. If it is stored, will it be avail-
able in the main warehouse or derived
and brought down to the delivery layer
each time? Remember to provide flexi-
bility for future use and data integration.
« How often must the data be refreshed? The

Data storage
and load cycles
are very
expensive.

refresh cycle could be daily, weekly, or
monthly. It may also be all the above, de-
pending on the type of data. Customer-
indicative data might be refreshed monthly,
whereas revenue- or credit-related data
might be refreshed weekly or daily de-
pending on the OLAP requirements des-
ignated by the business. The refresh cycle
will also depend on the update schedules
of the operational systems from which
the data is being acquired.

+ On which platform will the data ware-
house be developed and implemented?
You'll usually find the answer to this ques-

tion in your architecture document, and
it depends on many things: the refresh
cycle, the data volume, the complexity
of the legacy information acquisition
process, the access requirements, and the
tools available.

A GOOD FOUNDATION

It should now be clear that you need to
develop a clearly defined data warehouse
architecture early in your projects. Dur-
ing the development process, the data
warehouse development team will con-
stantly refer to your architecture docu-
ment for direction and guidance — so
ensure that they are accurate and com-
plete. With a complete set of blueprints
you can successfully build a data ware-
house that is complex in nature and that
can withstand extreme stress. ®

Denis Kosar is the vice president of Enter-
prise Data Architecture at Chase Manhattan Bank.
He has played a lead role in the two major data
warehouses developed in the wholesale bank. He
is a contributing author to the upcoming book,
Data Warehousing, Practical Advice from the Ex-
perts (Prentice Hall). Parts of this article have been
extracted with the permission of Prentice Hall,
You can email Denis at 76345.2142@compu-
serve.com.

DB2 15

PREMIER 1SSUE, WINTER 1996

