
 Craig S. Mullins & Associates, Inc.

Database
Performance Management

Return to Home Page
December 1998

Using Constraints in SQL Server

By Craig S. Mullins

SQL Server provides the ability to use DDL to code constraints within the
database. This enables business rules to be enforced by the database
instead of via application code. Through the judicious use of constraints,
application and SQL coding can be minimized and data integrity can be
maximized.

Constraints, in SQL Server, can be used to:

enforce the range of data values that can be stored in a column (check
constraints)
enforce the uniqueness of a column or group of columns within a table
(unique / primary key constraints)
enforce referential integrity (primary key and foreign key constraints)

SQL Server also provides rules, a type of integrity check that is similar to, yet
distinct from check constraints. This article will focus on check constraints

http://www.craigsmullins.com/

and rules, when to use them, and options for their use. Coverage of
referential integrity and the other constraints is beyond the scope of this
article.

Check Constraints
A check constraint is a mechanism for allowing predicates to be defined on a
column. The predicate is attached to the column as DDL and performs
automatic edit checking of values as they are presented for insert or update
to the table.

Check constraints consist of two parts:

name — every constraint must have a name. Failure to explicitly specify
a name causes SQL Server to automatically generate a unique name
for the constraint.
predicate — the actual conditions of the edit check are coded as a
typical SQL predicate (without the "where" keyword)

Check constraints can be coded at the column or table level. Let's examine
column-level constraints first. An example of a check constraint is depicted in
the following SQL:

create table employee
(emp_id int not null,
ssno char(9) not null,
emp_name varchar(50) not null,
salary numeric(12,2) not null

constraint salary_cons
check (salary < 50000.00),

comm numeric(12,2) null,

bonus numeric(9,2) null
)

The check constraint, named salary_cons, checks to make sure that the

value of the salary column is always less than $50,000.00. If the value to be
inserted or updated is 50,000 or greater the modification will fail. Obviously,
a company with this type of constraint in its employee table would be a poor
company for a SQL Server expert to work for!

It is wise to always explicitly assign names to each and every constraint
because the constraint name that SQL Server generates can be difficult to
administer later. Of course, the name of an automatically generated
constraint can be found by issuing the system procedure: sp_helpconstraint.

Check constraints must provide values or a column name within the same
table for the values to be checked against. Unfortunately, check constraints
can not be defined as a select from another table.

In addition to column-level check constraints, it is possible to specify check
constraints at the table level. Instead of being attached to a single column,
the constraint is attached to the entire table.

It is usually sufficient to code a check constraint at the column level.
However, there are situations where table-level check constraints are
required. Any time two columns of the table need to be specified in the
constraint, a table-level check constraint is required.

The following example depicts the same table as above adding a table-level
check constraint to ensure that an employee's bonus is less than or equal to

his commission:

create table employee
(emp_id int not null,
ssno char(9) not null,
emp_name varchar(50) not null,
salary numeric(12,2) not null

constraint salary_cons
check (salary < 50000.00),

comm numeric(12,2) null,
bonus numeric(9,2) null,

constraint do_not_pay_em
check (bonus <= comm)

)

Creating Rules and Defaults
In addition to check constraints Microsoft provides rules. Rules are free-
standing database objects that can be used to enforce data integrity. This is
desirable because it promotes reusability.

Although rules are similar to check constraints, they are different because
they are "free-standing" database objects; meaning they stand by
themselves outside the scope of any other object. Check constraints always
must be defined within the scope of a table.

Rules define the parameters for data validation. Before a rule is applied to
any column, though, it must first be bound to that column using the

sp_bindrule system procedure. Once bound, similar to a check constraint,
whenever data is inserted or updated, the rule is checked to ensure that the
data modification complies with the rule.

Both columns and user-defined data types can have rules defined for them.
Rules are implemented as:

a list of valid or invalid values is implemented using "in"
a range of valid or invalid values is implemented using "between"
an edit picture is implemented using "like"
predicate conformance is implemented using "<, >, <=, >=, =, or <>"

Similar to check constraints, rules can not be defined as selects from other
tables. Rules are created using the create rule DDL statement. It accepts
the following parameters:

name — a unique name for the rule object being created
expression — an SQL predicate defining the rule to be implemented.
The expression consists of two components:

place_holder — a variable that is referenced only within the rule.
The name of the place_holder variable must be preceded with the
'@' character. Example: @state
remainder of the expression — the definitional component of the
rule that can contain:

a list of valid or invalid values
a range of valid or invalid values
an edit picture
predicate conformance

Two examples of rules follow:

create rule state_rule as
@state in ("IL", "WI", "IN", "IA")

create rule grade_rule as
@grade like "[A-F] [+-]"

The first example of a rule is defined using a list of valid values; the second
uses an edit picture to define the valid values. The edit picture shows that
the valid values for a grade can be the letters A through F with a space, a
plus sign, or a minus sign appended to the letter.

After the rule has been created, it can be bound to columns and user-
defined data types. This is accomplished using the sp_bindrule system
procedure. It accepts the following parameters:

rule_name — the name of the rule to be bound to the column or user-
defined data type
object_name — the name of the column or user-defined data type to
which the rule is being bound

Keep these rules of thumb in mind before binding a rule to a column:

A column can have one and only one rule assigned to it. SQL Server
will allow a rule to be bound to a column that already has a rule defined.
In this case, the last rule bound to the column takes precedence.
A rule can be bound to many different columns (and user-defined data
types).
A column can have both a rule and a column-level check constraint
assigned to it. If the rule and the check constraint conflict, then you may
have trouble!
Rules are applied whenever data values are inserted or updated.

Rules can be removed from columns or user-defined data types when the
rule is no longer required. This can be accomplished using the
sp_unbindrule system procedure. It accepts the following parameters:

object_name — the name of the column or user-defined data type from
which the rule is being removed (unbound)
futureonly — futureonly is applicable to rules bound to user-defined
data types only. When the futureonly option is specified, it causes the
rule to be in effect on new columns only; current data that does not
conform to the rule is maintained as is. The rule will not be inherited by
columns that are currently defined using the user-defined data type.

Note that if the name of the rule is not provided, issuing the sp_unbindrule
will remove any rule from the named object.

Which Is Checked First?

Since columns and user-defined data types can have both rules and
defaults, the question is raised "which does SQL Server apply first, the rule
or the default?"

When a row is inserted, SQL Server will first check for defaults on
columns having no value supplied, and then check the data against any
rules
When a row is updated, SQL Server will simply check the data against
the rule.

Rules and defaults defined directly on columns in DDL over-ride any rule
and/or default bound to a column's user-defined data type.

Rules vs. Constraints

Both rules and constraints implement data integrity for column values in SQL
Server. So, when should one be used over the other? Well, there are pros

and cons for each.

Of the two methods, rules are more flexible. Rules are created as free-
standing database objects and can be bound to columns and user-defined
data types. Check constraints, on the other hand, are specified in the table
DDL. They are useful when a constraint exists between two columns of the
same table.

General rules of thumb:

Favor the use of rules over check constraints if reuse is a concern.
Because a rule is created once and then bound to each column to which
it applies you can be sure that the same checking is done for each
column to which the rule is bound.
Favor the use of check constraints if conformance to the ANSI SQL
standard is important to you.
Favor the use of check constraints if you operate in a heterogeneous
environment using multiple DBMS products in addition to SQL Server.
Oracle, DB2, and Informix all support check constraints, but not rules.
(Note: Sybase Adaptive Server also supports rules.)
You must use check constraints instead of rules when a comparison is
required between two columns of the same table. For example, if an
employee's bonus must always be less than a percentage of his salary,
the following check constraint would be appropriate:

check (bonus < salary * .10)

Finally, it is possible for both a rule and a check constraint to be defined for a
single column. If this occurs, be sure that the two are compatible. This is
usually an undesirable situation (why have two different restrictions on one
column?). Case in point, consider a rule and a check constraint applied to a
state code:

The check constraint specifies an in list of "CA", "IL", and "PA"
The rule specifies an in list of "CA", "AZ", and "TX"

Well, in this case, only "CA" can be placed in the state code column. What
would be worse is if the two lists contain mutually exclusive values. Then
nothing could ever be inserted into the table. All application inserts and
updates would fail!

Additional Semantic Concerns

SQL Server performs no semantic checking on constraints and defaults. It
will allow the DBA to define defaults that contradict check constraints.
Furthermore, SQL Server will allow the DBA to define check constraints that
contradict one another. Care must be taken to avoid creating this type of
problem. Examples of contradictory constraints follow:

check (empno > 10 and empno <9)

In this case, no value is both greater than 10 and less than 9, so nothing
could ever be inserted.

 create default type_dflt as "NEW"

 create table name as

 .
 .
 .

 emp_type	 char (8)	 'NEW'

 check (emp_type in ('TEMP', 'FULLTIME', 'CONTRACT')),

 .
 .
 .

 sp_bindefault "type_dflt", "owner.name"

In this case, the default value is not one of the permitted values according to
the defined check constraint. The default value would ever be inserted, it
would fail with a check constraint violation.

check (empno > 10)
check (empno >= 11)
In this case, the constraints are redundant. No logical harm is done, but both
constraints will be checked, thereby impacting the performance of
applications that modify the table in which the constraints exist.

What is a Domain?
According to Chris Date: "A domain is the set of all possible data values of
some particular type." Domains can be partially implemented in SQL Server
using a combination of user-defined data types, rules, and defaults.

SQL Server's domain support is only partial because it does not support the
following domain characteristics:

user-defined comparison operators
limiting comparison operators by domain
checking to ensure that two columns to be compared are pooled from
the same (or compatible) domains

Suppose that you wish to define a domain for product codes to be stored in
a SQL Server database. All product codes conform to the following
standards:

product codes are six bytes long
a product code must begin with an alphabetic character
the second byte must be numeric (but can not be 0), the next three
bytes can be anything, and the last byte must be either "@" or "#"

if a product code is unknown it should default to null (unless it is the
primary key or a part of a primary key)

To implement a domain for the product code take the following steps:

Create a user defined data type, say prodcode
sp_addtype prodcode, "char(6)", "null"

Create a rule, say prodcode_rule
create rule prodcode_rule as

@prodcode like "[A-Z][1-9]___[#,@]"
Create a default, say prodcode_deflt

create default prodcode_deflt as NULL
Create all columns containing product code information specifying the
"prodcode" user-defined data type. If the column participates in a
primary key, specify the "not null" property directly in the table to over-
ride the property in the user-defined data type. Bind the prodcode_rule
and the prodcode_deflt to all columns containing product codes.
Vóila! — a simulated domain has been created.

Check Constraint Benefits

So what are the benefits of check constraints and rules? The primary benefit

is the ability to enforce business rules directly in each database without
requiring additional application logic. Once defined, the business rule is
physically implemented and can not be bypassed. Check constraints and
rules also provide the following benefits:

Because there is no additional programming required, DBAs can
implement check constraints and rules without involving the application
programming staff. This effectively minimizes the amount of code that
must be written by the programming staff. With the significant
application backlog within most organizations, this can be the most
crucial reason to utilize check constraints.

Check constraints and rules provide better data integrity. Since they are
always executed whenever the data in the column upon which they are
defined is to be modified, the business rule is not bypassed during ad
hoc processing and dynamic SQL. When business rules are enforced
using application programming logic instead, the rules can not be
checked during ad hoc processes.
Check constraints and rules promote consistency. Because they are
implemented once, in the table DDL, each constraint is always
enforced. Constraints written in an application program, on the other
hand, must be executed by each program that modifies the data to
which the constraint applies. Usually the constraint must be coded into
many programs. This can cause code duplication and inconsistent
maintenance resulting in inaccurate business rule support. Rules further
promote consistency because one rule can be coded that is bound to
multiple columns.
Typically check constraints and rules will outperform the corresponding
application code because it is performed by the DBMS.

The overall impact of check constraints will be to increase application
development productivity.

Synopsis

Check constraints and rules provide a very powerful vehicle for supporting
business rules in SQL Server databases. They are non-bypassable and
therefore provide better data integrity than corresponding logic programmed
into application programs. It is a wise course of action to use check
constraints and/or rules in all new SQL Server applications and to retrofit old
applications with check constraints when the tables can be modified in an ad
hoc manner.

From SQL Server Update (Xephon) December
1998.

© 1999 Mullins Consulting, Inc. All rights reserved.
Home.

http://www.craigsmullins.com/

