i 01
01010110 100

##ee Craig S. Mullins

Return to Home Page

April 2000

SQL Server

Creating SQL Results Sets with Aggregate

and Detail Data
By Craig S. Mullins

Every SQL manipulation statement operates on a table
and results in another table. All operations native to
SQL, therefore, are performed at a set level. One
retrieval statement can return multiple rows; one
modification statement can modify multiple rows. This
feature of relational databases is called relational
closure. Relational closure is the major reason that
relational databases such as SQL Server generally are
easier to maintain and query than other types of
databases.

http://www.craigsmullins.com/

Additionally, SQL specifies what data to retrieve or
manipulate, but does not specify how to accomplish
these tasks. This keeps SQL intrinsically simplistic.

If you can remember the set-at-a-time orientation of
SQL Server, and that your queries specify "what" to
retrieve and not "how" to retrieve it, then you grasp the
essence and nature of SQL. The capability to act on a
set of data coupled with the lack of need for
establishing how to retrieve and manipulate data
defines SQL as a non-procedural language.

SQL Server also provides a series of functions that can
be used to aggregate data. Certain column functions
can be used to compute, from a group of rows, a single
value for a designated column or expression. For
example, the sum function can be used to add values in
multiple rows, returning the sum of the values instead
of each individual value.

Details and Aggregates

Now, taking the previous discussion into consideration,
what if you need to return detail data and aggregated
data in the same results set using SQL. For example,

consider the sample pubs database that comes with
Microsoft SQL Server. The sales table contains
information about each title sold (refer to Figure 1 for a
sample of the data contained in the sales table).

& Console Window Help
10
“ nere 1 1:Console Root\Microsoft SOL Servers\SAL Server GroupAGARGANTUA [Windows 95/98)\Databases\pubs\Tables
ﬁ]'#ction'Viaw'TooIs |J<::"’XH5(‘|\|$)@B3@‘ H
ormal |
D Consale Root Mame | Owiner | Tppe | Create Date |
1R Microsoft 5L Servers authors oho User 1998-06-19
=6 SUL Server Group discaunts dba User 1995-06-19...
=2 GARGANTUA [windows 35/56) emplayes tho User 1998.0619 ..
% Distributed Transaction Coardin . dbo ser 19980619 .
Hormal 35 Egt ff’;’e' it pub_info dbo User 1938-05-19
Narmel g . = publishers dho User 1998.0619..
% Gerver Roles rovsched dbo User 1998-06-19 ...
L Fiemate Servers sales dho User 1996-06-19
B8 Linked Servers 'Fii 2:Data in Table "sales’ u
B Databases
Bl Marthwind [=" | = = = = | +
8- 2 pubs star_id |ord num |ord date |qt |pa terms. \t\tle jd \
(0 Datsb M550 6871 3i14/94 5 et 60 BUI032
(0 Datab [T e3an 7223 9{13/34 3 het 60 PS2091
i Tables |7 7es A2976 5iz4/33 50 Het 30 PCARBE
~asans | ose QATH42.3 9/13{94 75 OM invoice PS2091
(1 Stored [T | 7067 D442 914/34 10 Met 60 P52091
{1 Rules || 7087 P2121 6f15/92 40 het 30 TC3218
(1 Defaul || 7087 P2121 61592 20 Met 30 TC4203
0 Usern | |7oe7 P2121 615/92 20 Met 30 TC7777
"] Databi [_|7131 NIL4005 914/34 20 Met 30 P52091
-8 50U Server Lo || 7131 NIL4014 9f14/34 s het 30 MC3021
B Dala Transfon | 7131 P30674 5{29/93 20 Met 60 P51372
{3 Backup Devic |—| 7131 P30872 5{29/93 3 Met 60 PS2106
& web Assistant I—| 7131 30872 5{25/93 15 Met 60 PS3333
B8 Databas Ma I 7131 P3087a 5{29/93 s het 60 PS7777
EE Q2299 1042893 15 Met 60 BU7A32
N [R— Y T TQ456 12/12/93 10 Met 60 MCz222
Dore e %999 2/21)93 35 OM invaice BUZ075
W 42311922 9f14/34 15 OM invoice MC3021
| |aosz 42311930 9f14/34 10 OM invice BU1032
I p723 311493 3 Met 30 BUIL11
- . 8042 QAETY.1 5{22/93 30 Met 30 PC1035
Mormal [2
o
Mormal L ; ; - .
[Elel == >

[Page 2 Sec 1 s [a 1 EEEE R i =)] e

Figure 1. Sample sales table data.

To return a simple list of the detail information
contained in this table you could issue the following

query:

select stor i1d, ord num, ord date, qty,
payterms, title id
from sales

But what if, instead of just returning qty on each row,
you also wished to return the average quantity,
maximum quantity, and minimum quantity. This is not
quite so easy. You can use the avg, max, and min
functions to return the average, maximum, and
minimum qty of a sale by store as follows:

select stor id, avg(gty), max(gty),
min (gty)

from sales

group by stor id

This query returns a single row for each store
containing the average, maximum, and minimum sale.
It does not contain any detail information, only
aggregated information.

However, there are times when it is desirable for a
single query to return both detail and aggregate
information. For example, what if you wished to
compare each sale gty to the average sale qty? There
are several ways to do this, but it is desirable to be able

return both values in a single query to simplify your
application.

One solution is to create a view. Consider the following
view named sales_qty created on the sales table, as
shown here:

use pubs

create view sales gty

(stor id, max gty, min gty, avg gty)
as select stor 1d, avg(gty), max(qty),
min (qty)
from sales
group by stor id

After the view is created, you can issue the following
select statement joining the view to the base table,
thereby providing both detail and aggregate
information on each report row:

select s.stor id, s.title id, s.qgty,

g.max _gty, g.min gty, g.avg gty
from sales s,

sales gty g
where s.stor id = g.stor id
order by 1

This query returns one row for each sale, listing both
the store identifier and title identifier, along with the
actual quantity, and the maximum, minimum, and
average quantity for that store. The data will be
returned in stor_id order. This can be changed simply
by changing the order by clause to specify which
column the results should be sorted by.

Additionally, it is important to remember the meaning
of the aggregates returned by the view. The aggregated
data is by store, and not by title. Neither does the
aggregated data represent the average, minimum, and
maximum of all sales (independent of store). This is
because that is the way the view was created. Do not
forget the definition of the view. View definitions can be
retrieved from the SQL Server system catalog tables
using the sp_helptext stored procedure as follows:

use pubs

exec sp helptext 'sales gty'

This will return the actual SQL DDL that was used to
create the view.

If additional information, such as the publication title is
required, you can add the title table to the join as
follows:

select s.stor id, s.title id, t.title,
s.qty,

g.max _gty, g.min gty, g.avg gty
from sales s,

sales gty q,

titles t
where s.stor id = g.stor id
and s.title id = t.title 1id
order by 1

Indeed, once the view is created, you can use it in any
way allowable by SQL Server. Using views in this
manner you can create any number of detail and
aggregate combination reports that your organization
may desire.

Other Approaches

Of course, this is only one example of how to return
detail and aggregate data in a single row. You could also
use a temporary table. A temporary table is created by
prefacing the table name (in the create statement) with

a number sign (#). Temporary tables are stored in the
temporary database, tempdb. The tempdb database is
used to hold all temporary tables and any other
temporary storage needs. It is a global resource; the
temporary tables and stored procedures for all users
connected to the system are stored there. SQL Server
re-creates tempdb every time it is started. This clears
out data so the system starts with a clean copy of
tempdb. Since tempdb is be definition, temporary, this
is not a problem.

So, you could create a table in tempdb as follows:
use pubs

create table #sales gty
(

stor id char (4),

max gty smallint,

min gty smallint,

avg gty smallint
)

Then you would have to populate the table with data
using a bulk insert, for example:

insert into #sales gty
(select stor id, avg(gqty), max(qty),
min (qty)

from sales
group by stor id)

Then you can run the query to retrieve the detail
information from sales and the aggregate information
from the temporary table as follows:

select s.stor id, s.title id, s.qty,

g.max gty, g.min gty, g.avg gty
from sales s,

#sales gty g
where s.stor id = g.stor id
order by 1

Views, however, are easier to implement than this
method. The advantage of a view over a temporary
table is that the view does not require storage. Once
created, it is always in sync with the base table(s) that it
is defined on. The temporary table will consume
storage, but only temporarily. Temporary tables are
automatically dropped on disconnect. So even though
you will need to create the temporary table only once,
you will need to populate it with the aggregated data
every time you run a query that needs the information.

Furthermore, when tempdb is used you will need to
concern yourself with the possibility that the data you
need to store in temporary tables exceeds the amount
currently allocated to tempdb. For these reasons, views
are preferred over temporary tables.

Another method, in this case preferable to the view
implementation, is to use in-line views. SQL Server
supports the capability to code a select statement in
the from clause of another select statement. This is
often referred to as an in-line view because the SQL
statement is placed in-line in the from clause of
another SQL select statement. So, you can use an in-
line view to embed the aggregate query into the detail
query as follows:

select s.stor 1d, s.title id, s.qty,
g.max gty, g.min gty, g.avg gty
from sales s,
(select stor 1d, avg(gty), max(qty),
min (qty)
from sales
group by stor id) as g
(stor id, avg gty, max gty, min gty)
where s.stor id = g.stor id
order by 1

This returns the same results as the other methods.
Refer to Figure 2 for an example of the results of this

query.

SQL Server Profiler - [Untitled - SAL Seript]
(1 File Edit Replay Yiew Took ‘window Help =& x|

e om [B MES S
e e BE oo @
L Cl (Tet]

= q

V. min{gty)
gty., min_gty)

T 1:
| +/500LBatchStarting

Event Class | Event Sub Class | Text

use pubs: select 5. storid, s litle id,
star_id, title_id. gty. max_ghy. min_c

g_qty from sales s [select storid, avalgyl,

Fio ae_ghy =5, min_gty =3, avg gy =4 J

i stor_id = B350, tile_id = L1032, g 3

Replay Rezult Row stor_id = B380, thle_id = PS2091, gty =3, max gty =5 min_qty =3, avg gty =4

Replay Result Row stor_id = 7066, tile_id = PCAE8E. gty = B0, max_ghy = 75. min_gty = 50, avg_gly =62
Replay Result Row star_id = 706G, thle_id = PS2091, gty =75, mas_ghy = 75, min_qty = 50, avg_qly =62
Replay Result Row sto_id = FOEY, ttle_id = PS2091, gty =10, max_gly =40, min_gty =10, avg_gly =22
Replay Rezult Row stor_id = 7OE7, ttle_id = TC3216, gty =40, max_ghy =40, min_qty =10, awg qiy =22

| Replay Result Row stor_id = 7067, title_id = TC4203, gty = 20 max_ghy = 40, min_gty = 10, avg_ghy = 22 | =
1 3

use pubs; 1=
==lect = stor id. = title id = gty
Q. max_qty. g min_gty. g avg_gty
from =sales =
zelect stor_id, awgigty nax gty min(gty
fron sales
group by stor_id) a=s g
stor_id. avg_qgty. max_gty. nin_gty
where = stor_id g =tor_id

crder by 1: -
il | 3
| 4

[Page 5 Sec 1 55 [Aes lnes col il [Rec e B ovR fEd O[O
Figure 2. Using an in-line view.

This approach is the most complicated because it
combines everything into a single query. However, it is
also the easiest to implement once you understand the
process.

Synopsis

This article has discussed three different ways to
combine detail and aggregate information on a single
line in a result set from a SQL Server query. Of the
three, the view method is probably the easiest to
understand. However, the last one, the in-line view
method, is the one with the least administrative
overhead because not additional SQL Server objects
need to be created. Only the middle method, using
temporary tables, is not recommended in practice
because of the programming and administrative
overhead required to implement.

From SQL Server Update (Xephon) April 2000.

© 2000 Craig S. Mullins, All rights reserved.
Home.

http://www.craigsmullins.com/

