‘L MANAGEMENT PERSPECTIVES

Package Problems And
Parameters

By Craig S. Mullins

ou may encounter some problems when imple-

—Y menting packages that will prove to be difficult
to resolve. This article examines potential prob-

lem areas and overviews new plan and package param-

eters to be used as you implement packages in your
environment.

Potential Problem Areas

One of these problems is determining at runtime
which package is actually being used for execution. If
multiple versions exist at one time, then any of them
could be executed if the corresponding load module is
run. It is difficult to determine which version is actually
being executed.

DB2 chooses which version of a package to run based
on the consistency token, not the version. The consis-
tency token is the internally-formatted, hexadecimal
timestamp stored with both the DBRM and the modi-
fied source at precompile time. If you need to determine
which of many package versions is actually executing,
you can use three options.

1. Browse the load module for the program in ques-
tion. Match the date and time placed there by the link-
age editor against the PCTIMESTAMP column of
SYSIBM.SYSPACKAGE. The times will not match
exactly, but they should be very close. For example, is-
sue the following query to obtain a list of all versions in
any collection for a specified package name:

SELECT COLLID, CONTOKEN, VERSION, PCTIMESTAMP
FROM SYSIBM.SYSPACKAGE

WHERE NAME = “your package name here”

ORDER BY COLLID

2. In a test environment, issue a dynamic EXPLAIN
inside the program. EXPLAIN will generate a
PLAN_TABLE row containing a VERSION column,
identifying the version of the package that is being run.
It should be noted that this method is resource-intensive
as EXPLAIN determines access paths and incurs I/O to
write to the PLAN_TABLE. It also requires that the ex-
ecutor of the package actually has a PLAN_TABLE
into which the row can be placed.

3. The final, and most reliable, method is to turn on
the DB2 performance trace. Class(3) contains IFCID
177 that records package allocation information. You
can then use a performance monitor to view the trace in-
formation. However, the performance trace is also very
resource-intensive and is not generally recommended
for continuous use in your production environment.

Another potential problem revolves around the VALI-
DATE bind parameter. If you specify VALIDATE(BIND),
the owner of the plan must have the execution privi-
leges for all of the packages in that plan. So, if you
wanted to include in the package list, e.g. COL1.*,
and only three packages are currently in that collec-
tion, e.g. PKG1, PKG2 and PKG3, it is not sufficient
that the user has execute authority on COL1.PKG]1,
COL1.PKG2 and COL1.PKG3. The user should
have execute authority on COL1.* because, in the fu-
ture, it is possible that a new package could be added
and the user may not be granted the same authority
on that package. If that scenario occurs, it would in-
validate the bind. The point is, if you need to add
packages to collections, grant execute authority on
COLL.*. Another way around that is to specify VAL-
IDATE(RUN). But this gets messy. [t degrades per-
formance significantly because validation must occur
at runtime. The general recommendation is to avoid
VALIDATE(RUN).

Package Bind Parameters

The following is a list of pertinent BIND parameters
for binding packages.

EXPLAIN (YES/NO)

When binding packages, you can specify either yes or
no for the EXPLAIN parameter. The recommendation
is to specify YES so that an accurate record of the ac-
cess paths for the package is recorded in your
PLAN_TABLE. Of course, the default is no.

QUALIFIER (qualifier)

The qualifier option can be used to qualify the SQL
statements in a program. Whatever is specified in the

RELATIONAL DATABASE JOURNAL * SEFTEMBER-OCTOBER 1994

Package Problems

QUALIFIER parameter will be used to
qualify all of the unqualified SQL in
your program. In the past, the only way
that SQL statements were qualified was
by owner. Now, by specifying qualifier,
the owner does not necessarily have to
be used as the qualifier for all the tables
in the program.

The default for qualifier is owner. This
is true whether the owner is explicitly
declared or implicit. If the owner param-
eter is not used to specify an owner, the
owner will default to the authid of the
user performing the bind. So, it is possi-
ble to explicitly declare a different
owner than the binder and to specify a
different qualifier as well.

It is important to note there is a differ-
ence between owner and qualifier. The
owner is the user who will be recorded in
the DB2 Catalog as the owner of this
package or the owner of this plan. Quali-
fier is simply a string that will be used to
qualify the unqualified SQL statements
in the package or plan. Qualifiers do not
necessarily have to be valid authids.

SQLERROR
(NOPACKAGE | CONTINUE)

Two options are available for the
SQLERROR parameter: NOPACKAGE
and CONTINUE. NOPACKAGE is the
recommended option when not operating
in a distributed environment. By specify-
ing NOPACKAGE, a package will not
be created when a SQL error is encoun-
tered. The other option is CONTINUE.
You may wonder why you would want
to continue and create a package if an er-
ror is encountered. SQL syntax may vary
from environment to environment and, if
you are operating in a distributed envi-
ronment, you may want to continue to
create the package anyway with the un-
derstanding that the SQL will function
properly at the remote location.

ISOLATION (CSIRR) And RE-
LEASE (COMMIT | DEALLOCATE)

Two other bind package parameters
that were available for plans can now be
specified at a lower granularity — at the
package level. These are ISOLATION
and RELEASE. This enables you to set
up a plan containing multiple packages
where each package utilizes its own iso-
lation and release strategy. For example,
one package could use an isolation strat-
egy of cursor stability and a release strat-
egy of commit. Another package could

RELATIONAL DATABASE JOURNAL » SEFTEMBER-OCTOBER 1994

specify repeatable read isolation and re-
lease deallocate. Both could then be in-
cluded in the same plan. DB2 would
switch strategies for each package dur-
ing execution.

Prior to DB2 V2.3 and packages,
only one isolation strategy and one re-
lease strategy could be specified per
plan regardless of the number of
DBRMs in the plan.

MEMBER (DBRM-name)

The MEMBER parameter is used to
specify the DBRM that will be bound
into the specified package. There is no
default for this parameter.

COPY (collection.package)

COPY is used to indicate that a pack-
age that currently exists in DB2 is to be
copied into a new collection. The collec-
tion-id specified for the new package
must be different from the collection-id
of the package being copied.

The MEMBER and COPY parameters
are mutually exclusive. You specify ei-
ther MEMBER or COPY, but not both.
If you specify MEMBER, the package
will be created from a DBRM member.
If you specify COPY, the package will
be copied from an existing package.

COPYVER (version)

If you specify the COPY parameter,
you can also specify the COPYVER pa-
rameter. COPYVER will indicate the ex-
plicit version you want to copy. The
default is the empty string,

ACTION (ADD | REPLACE)

It is also possible to specify an AC-
TION parameter of add or replace. ADD
is to be used if the package already ex-
ists and REPLACE should be used to re-
place a current package with a new one.
Of course, if you specify REPLACE for
a new package, DB2 will add the pack-
age — much like it adds plans in the cur-
rent environment.

REPLVER (version)

If you are replacing a package that al-
ready exists, the REPLVER parameter
can be used to indicate that a specific
version is to be replaced. The default
for REPLVER is the version that is in
the DBRM.

New Plan Bind Parameters
In addition to the availability of pa-

rameters for binding packages, DB2
V2.3 provides new parameters for bind-
ing plans. Following is a list of pertinent
new BIND parameters for plans.

PKLIST (list of packages)

The PKLIST parameter is used to list
the packages that are to be available to
this plan at execution time. The pack-
ages are listed one after the other, sepa-
rated by commas. Wild cards can be
used for any of the three parts of the
package name that can be specified here
(LOCATION, COLLECTION and
PACKAGE).

MEMBER (DBRM-name)

The MEMBER parameter works as it
did previously. It is used to specify the
DBRMs that will be bound into the spec-
ified plan. However, both the MEMBER
parameter and the PKLIST parameter
can be used to include both DBRMs and
packages in the plan.

There is no default for this parameter.

CACHESIZE

The CACHESIZE parameter is used
to specify the size of the authorization
cache for this plan. The authorization
cache is a portion of memory set aside
for the plan to store valid authids that
can execute the plan. By storing the
authids in memory, the cost of I/O can
be reduced.

The cache can vary in size from 0 to
4096 bytes in 256-byte increments. For a
plan with a small number of users, spec-
ify the minimum size of 256. If the plan
will have a large number of users, then
calculate the appropriate size as follows:
CACHESIZE = ([number of concurrent
users] * 8) + 32

Take the number returned by the for-
mula and round up to the next 256-byte
increment, making sure not to exceed
4096. Note 32 is added because there
are always 32 control bytes used by the
authid cache.

One final suggestion — if the plan is
executed only infrequently, or has been
granted to the public, do not cache au-
thids. Specify a CACHESIZE of zero.

CURRENTSERVER

The CURRENTSERVER parameter
is used to indicate that the plan is to
connect to a remote location immedi-
ately when it begins to execute the first
SQL statement.

Package Problems

ENABLE/DISABLE

Control over where a package or plan
can execute is provided by DB2 V2.3
by means of the BIND parameters: EN-
ABLE and DISABLE. These two pa-
rameters can limit execution of a
package or plan to a specific opera-
tional platform (e.g., batch, CICS, IMS,
etc.) and, possibly, even to a specific
connection name.

For example, to enable a plan to be run
only in the CICSX1 region, the follow-
ing BIND could be performed:

BIND PLAN (PLNAME) . . .
CICS (CICSX1)

ENABLE (CICS)

ENABLE can be used to indicate that
only the listed platforms should be uti-
lized when executing the package or
plan being bound. By contrast, DIS-
ABLE is used to specifically list the plat-
forms that cannot be used to execute the
package or plan; all other available plat-
forms are permitted.

The valid connection types that can be
specified to either the ENABLE or DIS-
ABLE parameter are:

BATCH — Controls execution in the
TSO environment

DLIBATCH — Controls execution
using the DL/I Batch Support Facility
DB2CALL — Controls execution in
the Call Attach Facility environment
CICS — Controls execution in the
CICS environment

IMS — Controls execution for IMS
environments (DLIBATCH,IMSBMP,
& IMSMPP)

IMSBMP — Controls execution as an
IMS Batch Message Processor (BMP)
IMSMPP — Controls execution as an
IMS Message Processing Program
(MPP)

REMOTE — Controls remote execu-
tion (valid for packages only).

The DLIBATCH, CICS, IMSBMP
and IMSMPP options can be combined
with a parameter of the same name to
control connection name. For example:

DISABLE (DLIBATCH) DLIBATCH (ZMKT1019)

ENABLE and DISABLE are mutually
exclusive parameters. That is, for any
single BIND, you can specify either EN-
ABLE or DISABLE, but not both. Fail-
ure to specify ENABLE or DISABLE

See Package Problems on page 31

12

«{ Karin Altonaga
Regional Sales Manager
AZ, GO, NV, OR, UT, WA
446 S. Anaheim Hills Rd., Suite 161
Anaheim Hills, CA 92807

818/577-5970
FAX 818/577-0073

Lori Hidrogo

' Regional Sales Manager

! AL, AR, ID, IL, IN, IA, KS, KY, LA,
MI, MN, MS, MO, MT, ND, NE, NM,
OH, OK, SD, TN, TX, WI, WY and
Western Canada

1 12225 Greenville Avenue, Suite 700

‘ Dallas, Texas 75243

214/669-9000
FAX 214/669-9909

Edward P. Marecki

Regional Sales Manager

CT, DC, DE, FL, GA, MA, ME, MD,
NH, NJ, NY, NC, PA, RI, SC, VA, VT,
WV, Quebec, Ontario

1 Richmond Square

| Providence, Rhode Island 02906

401/351-0274
FAX 401/351-0276

Vickie Miyaoka
Regional Sales Manager

CA

112 Falkirk Court
Sunnyvale, California 94087

408/481-0707
FAX 408/481-0706

BUSINESS MEDIA INC.

"
N

Car di nal CIRCLE ADVERTISER PAGE

;

{7 BMC SOFTWARE, INC. . . BACK COVER

R DIGITAL CONSULTING, INC. ... 25

ORRL ESJ NOVEMBER CONFERENCE

.................. |.B. COVER
6155 INFORMATION BUILDERS......... 3
b7erti INFOTEL CORPORATION 9
55 MICRO FOCUSINC................. 5
S9nkes NEON SYSTEMS, INC........... 77

25,27 . . PLATINUM TECHNOLOGY, INC.
........... LF. COVER, 1,16, 17

sl RELATIONAL ARCHITECTS
INTERNATIONAL 19

42, 44. . SYSDATA INTERNATIONAL . .. 22, 23

VM/ESA SUPPLEMENT
croeos BMASOLDS . o 7
oo BM/ADSTAR. ... 1
Y i e 18,19

'
=
=
&
o
=
==
=
=
=]
m
=
(%]
=
=]
]
=1

1
g
=
B
[+
~
o
=
=)
=
rm
-

1
=
S
=
(==]
=
>=<
{mm]
=]
—
"
o

369. ... STERLING SOFTWARE L.F.COVER

ADVERTISER INDEX

RELATIONAL DATABASE JOURNAL = SEPTEMBER-OCTOBER 1994

Oracle7’s new so-called cost-based opti-
mizer). Other chapters are titled Tuning
A New Database, Monitoring And Tun-
ing An Existing Database and Tuning
The Data Dictionary.

System Administrators

A final section on Tuning For System
Administrators fills 82 pages and covers
tuning long-running jobs and tuning for
specific system requirements. A chapter
of considerable interest to all Oracle7
users and potential users titled Tuning
In The Client/Server Environment is
hidden here and talks about such things
as the vagaries of working with the new
SQL Net component.

Appendices

And if all this were not enough, sever-
al nice appendices are included. One,
Planning For Oracle7, is an absolute
must for anyone who is doing so. A sec-
ond, Hot Performance Tips, should prob-
ably be entitled Subject XREF For
Those Too Harried To Read The Rest Of
The Book. It contains excellent point so-
lution advice (and slyly references earli-
er chapters) structured around answers to
direct, real-world questions from pro-
grammers, DBAs, planners, etc.

This book, then, is a solid answer to
the question “What sort of information
do people covet?” when it’s asked among
database professionals. In fact, after you
buy your own copy, it might be well to
keep it under lock and key around the of-
fice. It’s almost guaranteed to, in a classic
Jekyll and Hyde sort of phenomenon,
turn your info-phobe colleagues into cov-
etous info-philes who are just liable to
spirit off this hefty number while you're
away from your desk. To be forewarned
is to be forearmed. EBJ

ABOUT THE AUTHOR

Richard Brooks is a member of the
Group Technical Staff at Texas Instru-
ments in the Distributed Information Sys-
tems Department, 6350 Chase Oaks
Bhvd., Building 2, M/S 8467, Plano, TX
75023, CompuServe: 76516,3465.

Package Problems

Continued from page 12

will enable the package or plan to all en-
vironments.

Be careful when using ENABLE and
DISABLE because they may operate a
little differently than you might expect.
ENABLE says that an environment is
explicitly enabled for execution. For
example, enabling CICS means that CI-
CS is the only place that can execute
the plan or package. So, ENABLE is
limiting the environments in which this
package or plan can execute. By con-
trast, specifying DISABLE CICS, the
environment is actually more open be-
cause only one specific area is dis-
abled, implicitly enabling everything
else. The bottom line: ENABLE is
more limiting than DISABLE.

When a package or a plan must be
run in a specific environment or envi-
ronments, use the ENABLE parameter
to ensure that only proper access is per-
mitted. When a package or plan must
never be executed in a specific environ-
ment, use DISABLE to close off that
environment.

Conclusion

Hopefully this article has made you
aware of some of the implementation
considerations surrounding packages. If
you have some different ideas from
those you had when you first began
reading this article, then it has done its
job. One final reiteration of the general
theme of this article is when you devel-
op your package standards, naming
conventions and implementation plan,
remember to be firm but flexible. If you
are, your packages will be properly
wrapped and ready to be opened when
needed! G

ABOUT THE AUTHOR
Craig S. Mullins,

a senior education
specialist for Plat-
inum Technology,
Inc., has 10 years
experience in data-
base development.
He is the author
of “DB2 Developer’s Guide,”
second edition (ISBN 0-672-
30512), Prentice Hall, Carmel,
IN. Platinum Technology, Inc.,
1815 S. Mevers Rd., Oakbrook
Terrace, IL 60181, (800) 442-
6861. CompuServe 70410, 237
or Prodigy WHNX44A.

C On The Mainframe ———

Continued firom page 24

the country are connected for order en-
try, SNA (using 3270 terminal sessions)
is an ideal choice. It emphasizes effi-
cient, reliable and secure data transfer,
and enables a high degree of centralized
management,

TCP/IP is a better choice if the goals
are more dynamic and informal. In-
stead of communicating with a set of
predefined sites within an organization,
TCP/IP enables communication to oc-
cur with as many other systems as pos-
sible. Thus, data resources from all
over the world can be accessed when
TCP/IP “internetworking” is used.
Connecting two different organiza-
tions’ SNA networks is no easy task.
But, connecting a mainframe to thou-
sands of other networks, most of which
are non-IBM, is impossible with SNA.
TCP/IP is both easier to program and
use than SNA. It is the native protocol
of most UNIX systems and its applica-
tions are oriented toward the needs of
modern workstations.

Conclusion

Mainframes can internetwork by using
the open, vendor-independent TCP/IP
protocols, BSD sockets and the C pro-
gramming language. Software develop-
ers in the mainframe community must
move their products to a C/S model
where the mainframe is one of many ma-
chines that are internetworked. If this
takes place, the mainframe is likely to re-
main a viable computing resource for
years to come. G

ABOUT THE AUTHOR

Gregory Scott
Hester is a C ana-
| lvst at SAS Institute,
Inc. (Cary, NC),
specializing in
network communi-
cations for main-
: frames and UNIX-
based systems. He has been working
with mainframes and UNLX systems
for nine years. His experience has
been in network application devel-
opment using TCP/IP, the C pro-
gramming language/library, and
development of low-level systems
programming tools in C. SAS In-
stitute, Inc., Cary, NC 27513,
(919) 677-8001 Ext. 7548. Inter-
net: sasgsh@unx.sas.com, IBM-
MAIL: USSASP4S.

RELATIONAL DATABASE JOURNAL = SEPTEMBER-OCTOBER 1994

31

