010110 1

March 2005

Database
Admml:.tratmn

@8 Craig S. Mullins

Return to Home Page

DATABASE

TRENDS AND APPLICATIONS

The DBA Corner
by Craig S. Mullins

Often Misunderstood, Don't Ignore the Use of Null

From time to time database professionals must deal with the prospect of missing information
in their databases. The relational model popularized the concept of nulls for handling this
situation.

A null represents missing or unknown information at the column level. If a column “value”
can be null, it can mean one of two things: the attribute is not applicable for certain
occurrences of the entity, or the attribute applies to all entity occurrences, but the
information may not always be known. Of course, it could be a combination of these two
situations, too.

A null is not the same as 0 or blank. Null means no entry has been made for the column and
it implies that the value is either unknown or not applicable. A null column is not equal to,
greater than, or less than any other column or value, even another null. It is just unknown.

http://www.craigsmullins.com/
http://www.mullinsconsulting.com/dba_book.htm

A database that supports nulls enables the user to be able to distinguish between a
deliberate entry of 0 (for numerical columns) or a blank (for character columns) and an
unknown or inapplicable entry (NULL for both numerical and character columns). Null
indicates that the user did not explicitly make an entry or has explicitly entered NULL for the
column. For example, a “value” of null in the Price column of the ITEM table does not mean
that the item is being given away for free; instead it means that the price is not known or has
not yet been set. In general, defining a column as nullable provides a place holder for data
you might not yet know.

Nulls sometimes are inappropriately referred to as “null values.” Using the term value to
describe a null is inaccurate because a null implies the lack of a value. Therefore, simply
use the term null or nulls (without appending the term “value” or “values” to it).

When are nulls useful? Suppose that we also capture employee’s hair color when they are
hired. Consider three potential entity occurrences: a man with black hair, a woman with
unknown hair color, and a bald man. The woman with the unknown hair color and the bald
man both could be assigned as null, but for different reasons. The woman’s hair color would
be null meaning presently unknown; the bald man’s hair color could be null too, in this case
meaning not applicable.

How could you handle this without using nulls? You would need to create special values for
the HairColor column that mean “bald” and “unknown.” This is possible for a CHAR column
like HairColor. But what about a DB2 DATE column? All occurrences of a column assigned
as a DATE data type are valid dates. It might not be possible to use a special date value to
mean “unknown.” This is where using nulls is most practical.

Let’s consider another example, this time for a DATE column. When a new employee is
hired and is inserted into the EMP table, what should the employee termination date column
be set to? | don’t know about you, but | wouldn’t want any valid date to be set in that column
for my employee record. Instead, null can be used to specify that the termination date is
currently unknown.

Today’s database systems do not differentiate between nulls that signify unknown data and
those that signify inapplicable data. This distinction must be made by the program logic of
each application. Keep in mind, though, that using null to indicate “not applicable” can be an
indication of improper database design. By properly modeling and normalizing your data
structures you can usually eliminate the need to use nulls to indicate that a column is
inapplicable for a specific row.

Whenever possible, avoid nulls in columns that must participate in arithmetic logic (for
example, DECIMAL money values), and especially when functions will be used. Results can
be confusing when using functions on nullable columns. For every other column, determine
whether nullability can be of benefit before allowing nulls. And be sure that you understand
the exact manner in which your DBMS treats nulls. Different products can treat nulls
differently with regard to how nulls sort in an ORDER BY, whether nulls are considered
equal for eliminating duplicates (for example, when using DISTINCT), how indexes treat null
columns, and so on.

Nulls are certainly one of the most misunderstood features of today’s DBMS products. Most
of that has to do with the less than clear implementation and the confusion of the requisite
three-valued logic. Although nulls can be confusing, you cannot bury your head in the sand
and ignore nulls if your DBMS supports them. It is quite possible to create a database with
no nullable columns, while still being able to code a query that returns a null. Understanding
what nulls are, and how best to use them, can help you to create usable databases and
design useful and correct queries in your applications.

From Database Trends and Applications, March 2005.

© 2005 Craig S. Mullins, All rights reserved.

Home.

http://www.dbta.com/
http://www.craigsmullins.com/

