010 10110 100

##e Craig S. Mullins
Database Performance Management
Return to Home Page

DB2

January 1995

Lock Avoidance in DB2 V3
By Craig S. Mullins

Lock avoidance is a mechanism used by DB2 V3 to access data
without taking a lock. However, the lock avoidance mechanism
preserves data integrity. Prior DB2 versions and releases always
locked data pages whenever data on the page was accessed. DB2
V3 incorporates intelligent data access logic that can determine
when locks can be avoided. It is important to note that DB2 V3
can avoid taking locks only under certain circumstances that will
be explained in this article.

Lock avoidance is a desirable capability because it increases the
availability of DB2 data. Pages that were locked and therefore,
unavailable for access, in prior releases, can be accessed by DB2
V3. Furthermore, fewer instructions are needed to access data
when a lock can be avoided, because the instructions required to
lock a data page are not expended. When a latch is taken instead
of a lock, it is handled by the DB2 code, so the cross-memory
service calls to the IRLM are eliminated. For these reasons,


http://www.craigsmullins.com/

avoiding locks should have a positive impact on query
performance.

Which Locks Can be Avoided?

Not all locks are avoided under DB2 V3. Locking, now typically
referred to as transaction locking in the IBM manuals, is still
required to enforce semantics. Additionally, not all types of pages
are candidates for lock avoidance. Only data pages in user tables
are potential beneficiaries of the lock avoidance technique. Lock
avoidance can not be employed when accessing index pages or
data pages in the DB2 Catalog and DB2 Directory.

When will DB2 V3 utilize lock avoidance? Simply stated, if DB2
can determine that the data to be accessed is committed and that
no semantics will be violated by failing to acquire the lock, then
lock avoidance will be used.

But perhaps this is not as clear as it can be. Let’s be more
specific. Locks will always be taken for all pages accessed by any
application bound specifying ISOLATION(RR). The repeatable
read isolation level requires that data will not change over the
duration of a commit scope, regardless of the number of times it is
accessed. Failure to take a lock in this situation would cause a
violation of data semantics.

Locks can be avoided for pages accessed by cursors having the
FOR FETCH ONLY parameter that were bound specifying
ISOLATION(CS) and CURRENTDATA NO. Locks can be avoided
for unqualified rows accessed by queries bound with
ISOLATION(CS).

Additionally, when system-managed referential integrity is used,
locks can be avoided when checking for dependent rows when:

ot either the parent primary key is being updated, or;



® the parent row is being deleted and the ON DELETE
RESTRICT rule is specified.

Additionally, locking is always avoided when
SHRLEVEL(CHANGE) is specified for the COPY and RUNSTATS
utilities.

How Are Locks Avoided?

Because lock avoidance, by its very nature, avoids locks, an
alternate method of determining whether data is committed or not
must be employed by DB2. To do this two new features are used
by DB2 V3: CLSN and the PUNC bit.

CLSN is the Commit Log Sequence Number. It is the log RBA for
uncommitted data for the oldest active unit of recovery. DB2 can
compare the CLSN with the log RBA in the page header to
determine if it has been committed.

The PUNC bit is stored in the record header for each row of a DB2
table. PUNC stands for Possibly UNCommitted. DB2 periodically
resets PUNC bits when it has documentation that the page on
which the record is stored has been committed.

But, how can DB2 utilize the CLSN and PUNC bits to determine
whether locks can be avoided?

For a page being accessed, the RBA of the last page update (that
is, PGLOGRBA in the page header) is compared with the CLSN. If
PGLOGRBA is less than CLSN, DB2 knows that the data on that
page has been committed. Therefore, can avoid taking a lock and
no further checking is required.

If CLSN is less than PGLOGRBA, then the page is examined to
determine if any of its rows qualify (based upon the WHERE
clause of the SQL statement being processed). If no rows qualify,
a lock is not needed.



If rows qualify, the PUNC bit for the row being accessed is
checked to see if it is off. This indicates that the row has not been
updated since the last time the bit was turned off. In this can a
lock can be avoided because the data is committed.

If all of these tests fail, DB2 can not avoid taking a lock.
Lock Avoidance and Performance

To determine the impact of lock avoidance on your system, DB2
V3 provides additional trace records. IFCIDs 218 and 223 provide
CLSN information, and IFCIDs 226 and 227 provide “wait for page
latch” information.

Synopsis

Lock avoidance is a new technique that can potentially enhance
data availability and query performance. To encourage its usage
in application programs, specify ISOLATION(CS) and
CURRENTDATA NO when binding packages and plans.
Additionally, specifically code the FOR FETCH ONLY clause to
avoid ambiguous cursors.

From DB2 Update, January 1995.

© 2004 Craig S. Mullins, All rights reserved.
Home.


http://www.craigsmullins.com/

