; |
010 10110 100

##® Craig S. Mullins
Database Performance Management
Return to Home Page

October 1994

Views on Views
by Craig S. Mullins

One of the most fertile grounds for disagreement between DB2 professionals is
the appropriate usage of views. The manner in which views can be utilized to
provide the greatest benefit seems to be a very cloudy issue. Some analysts
promote the liberal creation and usage of views, whereas others preach a
more conservative approach.

Views are wonderful tools that ease data access and system development
when used prudently. Views are basically simple to create and implement, but
unfortunately a systematic and logical approach to view creation is not usually
taken, thereby causing the advantages of views to become muddled and

http://www.craigsmullins.com/

misunderstood. As you read this article you will find that views are very useful
when implemented wisely, but can be an administrative burden if implemented
without planning.

View Overview

Before proceeding with a discussion of view implementation strategy, let's
review the basics of views. All operations on a DB2 table result in another
table. This is a requirement of the relational model. A view can be considered
to be a logical table. No physical structure is required of a view; it is a
representation of data that is stored in other tables that do physically exist.
Views can also be based on other views.

Views are defined using SQL and are represented internally to DB2 by SQL
SELECT statements, not by stored data. The SQL comprising the view is
executed only when the view is accessed and views can be accessed by SQL
in the same way that tables are - accessed by SQL. Certain limitations on data
modification exist depending upon the type of view, though. Views that join
tables, use functions, specify DISTINCT, or use GROUP BY and HAVING may
not be updated, inserted to or deleted from.

Additionally, inserting is prohibited for the following types of views:

® views using constants

* views having columns with derived data in the SELECT-list

¢ views that do not contain all columns defined as NOT NULL from the
tables from which they were defined

Almost any SQL that can be issued natively can be coded into a VIEW. There
are exceptions, however. A VIEW can not be defined that contains any of the

following clauses: FOR UPDATE OF, ORDER BY, UNION or UNION ALL, and
OPTIMIZE FOR n ROWS.

View Implementation Rules

Understanding the basic features of views will provide a framework around
which your shop can develop rules governing view usage. It is imperative that
you institute guidelines for view creation in order to limit administrative burden.
The following rules can be used to ensure that views are created in a
responsible and useful manner at your shop. These rules were developed over
a number of years as a result of presenting information on views and
conversing with many different users in many different environments. There
may be more uses for views than are presented here, so do not needlessly fret
if you do not see your favorite use for views covered in this article-unless you
blindly use base table views. There is no adequate rationale for enforcing a
strict rule of one view per base table for DB2 application systems. In fact, the
evidence supports not using views in this manner.

There are three basic view implementation rules:

* The View Usage Rule
* The Proliferation Avoidance Rule
* The View Synchronization Rule

These rules define the parameters for efficient and useful view creation.
Following them will result in a DB2 shop implementing views that are effective,
minimize resource consumption, and have a stated, long-lasting purpose.

The View Usage Rule

The first rule is the view usage rule. Simply stated, your view creation strategy
should be goal-oriented. Views should be created only when they achieve a
specific, reasonable goal. Each view should have a specific application or
business requirement that it fulfills before it is created. That requirement should
be documented somewhere, preferably in a data dictionary or as a remark in

the DB2 Catalog.

Although this rule seems obvious, views are implemented at some shops
without much thought as to how they will be used. This can cause the number
of views that must be supported and maintained to continually expand until so
many views exist that it is impossible to categorize their uses.

There are seven basic uses for which views excel. These are:

1. to provide row and column level security

2. to ensure efficient access paths

3. to mask complexity from the user

4. to ensure proper data derivation

5. to provide domain support

6. to rename columns, and

/. to provide solutions which can not be accomplished without views

Let's examine each of these uses.

Security

One of the most beneficial purposes served by views is to extend the data
security features of DB2. Views can be created that provide a subset of
rows, a subset of columns, or a subset of both rows and columns from the
base table.

How do views help provide row and column level security? Consider an
EMPLOYEE table that contains all of the pertinent information regarding
an enterprise's employees. Typically, name, address, position, age, and
salary information would be contained in such a table. However, not every
user will require access to all of this information. Specifically, it may
become necessary to shield the salary information from most users. This

can be done by creating a view that does not contain the salary column
and granting most users the ability to access the view, instead of the base
table.

Similarly, row level security may be necessary. Consider a table that
contains project information. Typically this would include project name,
purpose, start date, and who is responsible for the project. Perhaps the
security requirements of the projects within your organization deem that
only the employee who is responsible for the project can access their
project data. By storing the authid of the responsible employee in the
PROJECT table, a view can be created using the USER special register
such as the one shown below:

CREATE VIEW MY_PROJECTS
(PROJ_NO, PROJ_NAME, DEPT_NO,
PROJ_STAFF, PROJ_START DATE,
PROJ_END_DATE)

AS
SELECT PROJNO, PROJNAME, DEPTNO,

PRSTAFF, PRSTDATE, PRENDATE
FROM DSN8230.PROJ
WHERE RESPEMP = USER

The USER special register will contain the primary authorization ID of the
process initiating the request. So, if user TEDOO1 issues a SELECT
statement against the MY_PROJECTS view, only rows where RESPEMP
is equal to TEDOO1 will be returned. This is a fast and effective way of
instituting row level security.

By eliminating restricted columns from the SELECT list and providing the
proper predicates in the WHERE clause, views can be created to allow
access to only those portions of a table that each user is permitted to
access.

Efficient Access

Views can also be used to ensure optimal access paths. By coding
efficient predicates in the view definition SQL, efficient access to the
underlying base tables can be guaranteed. The use of stage 1 predicates,
proper join criteria, and predicates on indexed columns can be coded into
the view.

For example, consider the following view:

CREATE VIEW EMP_DEPTS
(EMP_NO, EMP_FIRST_NAME, EMP_MID_INIT,
EMP_LAST NAME, DEPT_NO, DEPT_NAME)
AS
SELECT E.EMPNO, E.FIRSTNME, E.MIDINIT,
E.LASTNAME, D.DEPTNO, D.DEPTNAME
FROM DSN8230.EMP E,
DSN8230.DEPT D
WHERE D.DEPTNO = E.WORKDEPT

By coding the appropriate join criteria into the view definition SQL you can
ensure that the correct join predicate will always be utilized.

Complexity
Somewhat akin to coding appropriate access into views, complex SQL
can be coded into views to mask the complexity from the user. This can be

extremely useful when your shop employs novice DB2 users (whether
those users are programmers, analysts, managers, or typical end users).

Consider the following rather complex SQL that implements relational
division:

SELECT DISTINCT PROJNO

FROM DSN8230.PROJACT P1
WHERE NOT EXISTS
(SELECT ACTNO

FROM DSN8230.ACT A

WHERE NOT EXISTS
(SELECT PROJNO
FROM DSN8230.PROJACT P2
WHERE P1.PROJNO = P2.PROJNO
AND A.ACTNO = P2.ACTNO),

This query uses correlated subselects to return a list of all projects in the
PROJACT table that require every activity listed in the ACT table. By
coding this SQL into a view called, say ALL_ACTIVITY_PROJ, then the
end user need only issue the following simple SELECT statement instead
of the more complicated query:

SELECT PROJNO
FROM ALL_ACTIVTY_PROJ

Now isn't that a lot simpler?

Derived Data
Another valid usage of views is to ensure consistent derived data by

creating new columns for views that are based upon arithmetic formulae.
For example, creating a view that contains a column named
TOTAL_COMPENSATION which is defined by selecting SALARY +
COMMISSION + BONUS is a good example of using derived data in a
view.

Domain Support

It is a sad fact of life that most relational database management systems
do not support domains, and DB2 is no exception. Domains are an
instrumental component of the relational model and, in fact, were in the
original relational model published by Ted Codd in 1970-almost 25 years
ago! Although the purpose of this article is not to explain the concept of
domains, a quick explanation is in order. A domain basically identifies the
valid range of values that a column can contain. Of course, domains are
more complex than this simple definition can support. For example, the
relational model states that only columns pooled from the same domain
should be able to be compared within a predicate (unless explicitly
overridden).

Some of the functionality of domains can be implemented using views and
the WITH CHECK OPTION clause. The WITH CHECK OPTION clause
ensures the update integrity of DB2 views. This will guarantee that all data
inserted or updated using the view will adhere to the view specification.
For example, consider the following view:

CREATE VIEW EMPLOYEE
(EMP_NO, EMP_FIRST_NAME, EMP_MID_INIT,
EMP_LAST NAME, DEPT, JOB, SEX, SALARY)
AS
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
WORKDEPT, JOB, SEX, SALARY

FROM DSN8230.EMP
WHERE SEXIN ('M', 'F")
WITH CHECK OPTION;

The WITH CHECK OPTION clause, in this case, ensure that all updates
made to this view can specify only the values 'M' or 'F' in the SEX column.
Although this is a simplistic example, it is easy to extrapolate from this
example where your organization can create views with predicates that
specify code ranges using BETWEEN, patterns using LIKE, or a subselect
against another table to identify the domain of a column.

A word of caution however: when inserts or updates are done using these
types of views, DB2 will evaluate the predicates to ensure that the data
modification conforms to the predicates in the view. Be sure to perform
adequate testing prior to implementing domains in this manner to be
safeguard against possible performance degradation.

Column Renaming

As you can tell from looking at the sample views shown in the other
sections, you can rename columns in views. This is particularly useful if a
table contains arcane or complicated column names. A wonderful example
of such tables are the DB2 Catalog tables.

Consider the following view:

CREATE VIEW PLAN_DEPENDENCY
(OBJECT_NAME, OBJECT _CREATOR, OBJECT TYPE,
PLAN_NAME, IBM_REQD)

AS
SELECT BNAME, BCREATOR, BTYPE,

DNAME, IBMREQD
FROM SYSIBM.SYSPLANDEP

Not only have we renamed the entity from SYSPLANDEP to the more
easily understood name, PLAN_DEPENDENCY, but we have also
renamed each of the columns. Isn't it much more easy to understand that
PLAN_NAME than DNAME, or OBJECT_CREATOR than BCREATOR?
Views can be created on each of the DB2 Catalog tables in this manner so
that your programmers will be better able to determine which columns
contain the information that they require. Additionally, if other tables exist
with clumsy table and/or column names, views can provide an elegant
solution to renaming without having to drop and recreate anything!

Single Solution Views

The final view usage situation that may be encountered is probably the
most practical usage for views-when views are the only solution!
Sometimes, a complex data access request may be encountered that can
not be coded using SQL alone. However, sometimes a view can be
created to implement a portion of the access. Then, the view can be
queried to satisfy the remainder.

Consider the scenario where you want to report on detail information and
summary information from a single table. For instance, what if you would
like to report on column length information from the DB2 Catalog. For
each table, provide all column details, and on each row, also report the
maximum, minimum, and average column lengths for that table.
Additionally, report the difference between the average column length and
each individual column length. Try doing that in one SQL statement!

Or, you could create a view to solve the dilemma. Consider the
COL_LENGTH view based on SYSIBM.SYSCOLUMNS shown below:

CREATE VIEW COL_LENGTH
(TABLE_NAME, MAX_LENGTH,
MIN_LENGTH, AVG_LENGTH)

AS
SELECT TBNAME, MAX(LENGTH),

MIN(LENGTH), AVG(LENGTH)
FROM SYSIBM.SYSCOLUMNS
GROUP BY TBNAME

After the view is created, the following SELECT statement can be issued
joining the view to the base table, thereby providing both detail and
aggregate information on each report row:

SELECT TBNAME, NAME, COLNO, LENGTH,
MAX_LENGTH, MIN_LENGTH, AVG_LENGTH,
LENGTH - AVG_COL_LENGTH

FROM SYSIBM.SYSCOLUMNS C,
authid.COL_LENGTH V

WHERE C.TBNAME = V.TABLE_NAME

ORDER BY 1, 3

Situations such as these are a great opportunity for using views to make
data access a much simpler proposition.

The Proliferation Avoidance Rule
The second rule is the proliferation avoidance rule. It is simple to state and
directly to the point: do not needlessly create DB2 objects that are not

necessary.

Whenever a DB2 object is created additional entries are placed in the DB2
Catalog. Creating needless views (and, indeed any object), causes what | call
catalog clutter-entries in the catalog for objects which are not needed or not
used.

In terms of views, for every unnecessary view that is created DB2 will
potentially insert rows into 4 view-specific catalog tables (SYSVTREE,
SYSVLTREE, SYSVIEWS, and SYSVIEWDEP) and 3 table-specific catalog
tables (SYSTABLES, SYSTABAUTH, and SYSCOLUMNS). If uncontrolled
view creation is permitted, DASD growth, I/O problems, and inefficient catalog
organization may result.

The proliferation avoidance rule is based on common sense. Why create
something that is not needed? It just takes up space that could be used for
something that is needed.

The View Synchronization Rule

The third, and final view implementation rule is the view synchronization rule.
The basic intention of this rule is to ensure that views are kept in sync with the
base tables upon which they are based.

Whenever a change is made to a base table, all views that are dependent
upon that base table should be analyzed to determine if the change will impact
them. All views should remain logically pure. The view was created for a
specific reason (see the View Usage Rule above). The view should therefore
remain useful for that specific reason. This can only be accomplished by
ensuring that all subsequent changes that are pertinent to a specified usage
are made to all views that satisfy that usage.

For example, say a view was created to satisfy an access usage, such as the

EMP_DEPTS view previously depicted. The view was created to provide
information about employees and their departments. If a column is added to
the EMP table specifying the employee's social security number, it should also
be added to the EMP_DEPT view if it is pertinent to that view's specific use. Of
course, the column can be added to the table immediately and to the view at
the earliest convenience of the development team.

The synchronization rule requires that strict change impact analysis
procedures be in place. Every change to a base table should trigger the usage
of these procedures. Simple SQL queries can be created to assist in the
change impact analysis. These queries should pinpoint QMF queries,
application plans, and dynamic SQL users that could be using views affected
by the specific changes to be implemented.

View synchronization is needed to support the view usage rule. By keeping
views in sync with table changes the original purpose of the view is maintained.

View Naming Conventions

Views also instigate another area of conflict within the world of DB2-that being
how to name views. Remember, a DB2 view is a logical table. It consists of
rows and columns, exactly the same as a DB2 table. A DB2 view can
(syntactically) be used in SQL SELECT, UPDATE, DELETE, and INSERT
statements in the same way that a DB2 table can. Furthermore, a DB2 view
can be used functionally the same as a DB2 table (with certain limitations on
updating as outlined in my article). Therefore, it stands to reason that views
should utilize the same naming conventions as are used for tables. (As an
aside, the same can be said for DB2 aliases and synonyms).

End users querying views need not know whether they are accessing a view or
a table. That is the whole purpose of views. Why then, enforce an arbitrary
naming standard, such as putting a V in the first or last position of a view
name, on views? DBAs and technical analysts, those individuals who have a

need to differentiate between tables and views, can utilize the DB2 Catalog to
determine which objects are views and which objects are tables.

Most users do not care whether they are using a table, view, synonym, or alias.
They simply want to access the data. And, in a relational database, tables,
views, synonyms, and aliases all logically appear to be identical to the end
user: collections of rows and columns. Although there are certain operations
that can not be performed on certain types of views, users who need to know
this will generally be sophisticated users. For example, very few shops allow
end users to update any table they want using QMF, SPUFI, or some other tool
that uses dynamic SQL. Updates, deletions, and insertions (the operations
which are not available to some views) are generally coded into application
programs and executed in batch or via on-line transactions. Most end users
need to query tables dynamically. Now you tell me, which name will your
typical end user remember more readily when he needs to access his
marketing contacts: MKT _CONTACT or VMKTCTO01?

Do Not Create One View Per Base Table

DB2 provides the very useful capability to create a virtual table known as a
view. Often times the dubious recommendation is made to create one view for
each base table in a DB2 application system. This is what | call The Big View
Myth. The reasoning behind The Big View Myth revolves around the desire to
insulate application programs from database changes. This insulation is
purported to be achieved by mandating that all programs are written to access
views instead of base tables. When a change is made to the base table, the
programs do not need to be modified because they access a view - not the
base table.

Although this sounds like a good idea in principle, indiscriminate view creation
should be avoided. The implementation of database changes requires
scrupulous analysis regardless of whether views or base tables are used by
your applications. Consider the simplest type of database change-adding a

column to a table. If you do not add the column to the view, no programs can
access that column unless another view is created that contains that column.
But if you create a new view every time you add a new column it will not take
long for your environment to be swamped with views. Even more troublesome
is which view should be used by which program? Similar arguments can be
made for removing columns, renaming tables and columns, combining tables,
and splitting tables.

In general, if you follow good DB2/SQL programming practices, you will usually
not encounter situations where the usage of views initially would have helped
program/data isolation anyway. By dispelling The Big View Myth you will
decrease the administrative burden of creating and maintaining an avalanche
of base table views.

Always Specify Column Names

When creating views DB2 provides the option of specifying new column names
for the view or defaulting to the same column names as the underlying base
table(s). It is always advisable to explicitly specify view column names instead
of allowing them to default, even if using the same names as the underlying
base tables. This will provide for more accurate documentation.

Code SQL Statements in Block Style

All SQL within each view definition should be coded in block style. As an aside,
this standard should apply not only to views but to all SQL whether embedded

in a COBOL program, coded as a QMF query, or implemented using any other
tool. Follow these guidelines for coding the SELECT component of your views:

* Code keywords such as SELECT, WHERE, FROM, and ORDER BY such
that they stand off and always begin at the far left of a new line.

¢ Use parentheses where appropriate to clarify the intent of the SQL
statement.

¢ Use indentation to show the different levels within the WHERE clause.
All of the examples in this article follow these guidelines.

Synopsis

DB2 views are practical and helpful when implemented in a systematic and
thoughtful manner. Hopefully this article has provided you with some food for
thought pertaining to how views are implemented at your shop. And if you
follow the guidelines contained in this article, in the end, all that will remain is a
beautiful view!

From DB2 Update (Xephon), October 1994.

© 1999 Craig S. Mullins. All rights reserved.
Home.

http://www.craigsmullins.com/

