
 Craig S. Mullins & Associates,
Inc.
             
 
Database
Performance Management

Return to Home Page
November 1998
 

 
SQL Analysis and Review

 
By Craig S. Mullins

 
All access to relational data by application programs is
done using SQL. Whether it is embedded directly in an
application, issued ad hoc using a query tool, or coded
using an API like ODBC, the underlying access is
SQL. Therefore, SQL reviews should be a necessary
component of both pre- and post-implementation
performance analysis for database applications.
Indeed, most experts agree that 70% to 80% of all
performance problems in database applications can
be traced to poorly written SQL code.

 
SQL is a very powerful high level language that
provides a greater degree of abstraction than do
procedural languages such as C++, COBOL, or Visual
Basic. Procedural languages require the programmer

http://www.craigsmullins.com/


to navigate the data structures. In other words,
program logic must be coded to proceed record by
record through the data in an order determined by the
application programmer. This information is encoded
in the high level language using multiple statements
and is difficult to change once it has been
programmed. SQL, on the other hand, is designed to
allow the programmer to specify what data is needed,
not how to retrieve it. It is coded without any
embedded data navigational instructions.

 
How then does the DBMS determine which data to
retrieve for a given SQL statement? This is
accomplished by the relational optimizer. The
relational optimizer analyzes SQL statements and
fashions the data navigational instructions "behind the
scenes." These data navigational instructions are
commonly referred to as access paths. Access paths
can be thought of as mini-programs, under the control
of the DBMS, that contain specific data access
instructions. The DBMS uses the access paths each
time a SQL statement is run.

 
In addition, SQL is a flexible language. SQL
statements can be formulated in a number of different,
and functionally equivalent manners. This is possible
because SQL provides the ability to code a single
feature in several ways. One example of this is its
capability to access multiple tables in a single
statement either by joining tables or nesting queries. A
nested query can always be converted to a
functionally equivalent join. Some other examples of



this flexibility can be seen in the vast array of similar
functions and predicates, some examples of which are
shown in the table below:

 



 
The actual performance of these options can fluctuate
wildly, but the actual data returned to the application
can be equivalent. For this reason, it is imperative that
the best option be used, thereby ensuring optimal
performance. A SQL review, conducted by
experienced performance analysts, can catch these
types of potential performance problems and more.

 
There are many different access paths that can be
chosen for any given SQL statement. For example, an
index can be used to quickly locate the rows needed,
or the entire table could be read, row by row, looking
for the specific values requested. Likewise, when
multiple tables are accessed in a single SQL
statement the tables can be combined in any order
and still return the correct results. The performance,
however, will vary greatly depending on the volume of
data in the tables, the nature of the request, and the
indexes available for the table.

 
RDBMS optimizers usually do a good job of choosing



the most efficient access path, but not always. The
exact access paths chosen are crucial to the overall
performance of any application that accesses a
database. As such, a method to monitor and tune
access path selection is necessary.

 
SQL Expert Systems
In addition to policies and procedures for SQL analysis
and review, automated tools can be used to minimize
the amount of bad SQL code. One of the most useful
of these tools is the SQL expert system.

 
SQL expert systems provide the ability to quickly
analyze all SQL in an application program and provide
an in-depth explanation of the data access, as well as
suggestions for improving the efficiency of the SQL.
All of this is provided in an easy to read, textual report.
The SQL expert system uses the ?explain? or ?show
plan? capabilities of the RDBMS coupled with an
expert system of SQL performance rules.

 
It is important for the SQL expert system to clarify the
explain results because the native capabilities
provided by the RDBMS can be somewhat difficult to
master. Depending upon the RDBMS being used, the
system-provided ?explain? or ?show plan? command
obtains basic access path information for SQL
statements. However, this basic information is either
codified and placed into a table or produced textually
in a cryptic format. Neither option is an optimal format
for supporting SQL tuning.

 



At the heart of the SQL expert system is a knowledge
base of SQL efficiency rules. These rules are based
upon SQL efficiency guidelines for the DBMS in
question. The SQL expert system reads the SQL
statement, compares it to the efficiency rules at its
disposal, and generates reports containing in-depth
explanations and recommendations. There are three
different types of rules that a SQL expert system can
use:

SQL Design Rules — These rules are designed
to flag potential problems found in application
SQL statements. For example, the SQL rules will
help you identify poorly coded predicates,
statements that are not using an index, and
predicate evaluation.



 

Physical Design Rules — These rules are
designed to flag potential problems with the
physical database design. For example,
disorganized indexes and improper DDL
parameters.



 

DBMS Design Rules — These rules are
designed to flag potential problems with features
specific to the DBMS. For example, DB2 supports
plans and packages that are encapsulated
access paths for one or more application
programs. Any DB2 SQL expert system should
have rules that understand DB2's plan and
package options and parameters.



The SQL expert system, of course, is only as good as
the expert rules it provides. Most SQL expert systems
allow customization of the expert rules. Customization
enables organizations to fine tune the rules to site-
specific standards.

 
Another feature typically offered by SQL expert
systems is versioning. By keeping multiple versions of
the SQL analysis information and the
recommendations provided, users can produce
historical reports and use the data for future
performance and testing needs.

 
Using a SQL expert system can result in a reduction in
the amount of time, effort, and human error involved in
SQL tuning. However, the most important benefit will
be efficient SQL resulting in efficient applications.

 
Summary
SQL is at the heart of today's modern database
applications. Poorly coded or ill-conceived, application
performance will suffer, and business processes will
be negatively impacted. Wise organizations will
implement policies, procedures, and tools to create
efficient and effective SQL. Failure to do so will impact
the company's bottom line-and quite possibly your job
security.


From Computing News&Review, November
1998.

© 1999 Mullins Consulting, Inc. All rights reserved.
Home.   

http://www.newsrev.com/
http://www.craigsmullins.com/



