
www.idug.org32

S o l u t i o n s f r o m t h e E x p e r t s

Clarifying Some Common
Misconceptions

BY CRAIG MULLINS

art of my job is talking to IT pro-
fessionals who use DB2, including
developers, DBAs and managers.

One of the things I’ve noticed recently,
more than in the past, is that there are
some aspects of DB2 that are commonly
misunderstood—not by everyone, of
course—but by enough of us that it war-
rants some investigation and clarification.
There is no shame in this; DB2 has grown
by leaps and bounds in the past decade
making it larger and more complex than
ever before. This article will look at several
of the most common DB2 misunderstand-
ings and try to shed some light on them.

The PIECESIZE Clause
The creation of non-partitioning

indexes (NPIs) on tables in a partitioned
table space is one of the most vexing prob-
lems facing DBAs. Partitioned table spaces
tend to be large and by their very design
will span multiple underlying data sets.
The partitioning index that defines the
partitioning key and key ranges also spans
multiple data sets. But there can be only
one partitioning index per partitioned
table space. What happens when you need
to define more than one index on a table
in a partitioned table space?

Well, in the old days (pre-V5), the
DBA could not control the creation of the
underlying data set(s) used for NPIs. As of
V5, the PIECESIZE clause of the CRE-
ATE INDEX statement can be used dur-
ing index creation to break an NPI into
several data sets (or "pieces"). More accu-
rately, the PIECESIZE clause specifies the
largest data set size for a non-partitioned
index. PIECESIZE can be specified in
kilobytes, megabytes, or gigabytes. For

example, the following statement will limit
the size of individual data sets for the
XACT2 index to 256 megabytes:

CREATE TYPE 2 UNIQUE INDEX
DSN8710.XACT2

ON DSN8710.ACT (ACTKWD ASC)
USING STOGROUP DSN8G710

PRIQTY 65536K
SECQTY 8192K
ERASE NO

BUFFERPOOL BP0
CLOSE NO
PIECESIZE 256M;

Basically, PIECESIZE is used to
enable NPIs to be created on very large
partitioned table spaces. It breaks apart the
NPI into separate pieces that can be some-
what managed individually. Without
PIECESIZE, NPIs would be quite diffi-
cult to manage and administer. Keep in
mind, though, that PIECESIZE does not
magically partition an NPI based on the
partitioning scheme of the tablespace. This
is a common misperception of the PIECE-
SIZE clause. So, if you have a partitioned
table space with four partitions and then
create an NPI with four pieces, the data in
the NPI pieces will not match up with the
data in the four partitions.

When using PIECESIZE, more data
sets will be created and, therefore, you can
obtain greater control over data set place-
ment. Placing the pieces on separate disk
devices can help reduce I/O contention for
SQL operations that access NPIs during
read or update processing. The elapsed
time improvement may be even greater
when multiple tasks are accessing the NPI.

Separating the NPI into pieces allows

for better performance of INSERT,
UPDATE and DELETE processes by
eliminating bottlenecks that can be caused
by using only one data set for the index.
The use of pieces also improves concurren-
cy and performance of heavy INSERT,
UPDATE and DELETE processing
against any size partitioned table space
with NPIs.

Keep in mind that PIECESIZE is
only a specification of the maximum
amount of data that a piece (that is, a data
set) can hold and not the actual allocation
of storage, so PIECESIZE has no effect on
primary and secondary space allocation.
Each data set will max out at the PIECE-
SIZE value, so specifying PRIQTY greater
than PIECESIZE will waste space. Avoid
setting the PIECESIZE too small. A new
data set will be allocated each time the
PIECESIZE threshold is reached. DB2
will increment the A001 component of the
data set name each time. This makes the
physical limit 999 data sets (A001 through
A999). If PIECESIZE is set too small, the
data set name can limit the overall size of
the table space. Ideally, the value of your
primary quantity and secondary quantities
should be evenly divisible into PIECE-
SIZE to avoid wasting space.

To choose a PIECESIZE value, divide
the overall size of the entire NPI by the
number of data sets that you wish to have.
For example, for an NPI that is 8
megabytes, you can arrive at 4 data sets for
the NPI by specifying PIECESIZE 2M.
Of course, if your NPI grows over 8
megabytes in total you will get additional
data sets. Keep in mind that 32 pieces is
the limit if the underlying tablespace is not
defined with DSSIZE 4G or greater. The

P

www.idug.org 33

limit is 254 pieces if the tablespace is
defined as DSSIZE 4G or greater.

IDENTITY Columns
There also is a lot of confusion sur-

rounding DB2’s implementation of
IDENTITY columns. Some of the com-
mon questions I hear are: “What do they
do, anyway?”; “How do they work?” and
“Why should I bother to learn about them
at all with all those limitations?” So let’s try
to answer these questions.

A common requirement of relational
applications and databases is the need to
store a counter that identifies rows in
tables. Until V7, DB2 provided no inher-
ent, or built-in, support for such function-
ality. Now DB2 V7 adds support for
IDENTITY columns. An IDENTITY
column can be defined to a DB2 table
such that DB2 will automatically generate
a unique, sequential value for that column
when a row is added to the table. DB2's
implementation of IDENTITY columns
avoids some of the concurrency and per-
formance problems that can occur when
application programs are used to populate
sequential values for a "counter" column.

When inserting data into a table that
uses an IDENTITY column, the develop-
er or user does not provide a value to be
inserted for the IDENTITY column.
Instead, DB2 will calculate the appropriate
value to be inserted.

Only one IDENTITY column can be
defined per DB2 table. Additionally, the
data type of the column must be SMALL-
INT, INTEGER, BIGINT or DECIMAL
with a zero scale; that is, DECIMAL(x,0).
The data type also can be a user-defined
DISTINCT type based on one of these
numeric data types. The designer has con-
trol over the starting point for the generat-
ed sequential values, and the number by
which the count is incremented.

An example creating a table with an
IDENTITY column is shown below:

CREATE TABLE EXAMPLE
(ID_COL INTEGER NOT NULL
GENERATED ALWAYS AS IDENTITY
START WITH 100
INCREMENT BY 10
...);

In this example, the IDENTITY col-
umn is named ID_COL. The first value
stored in the column will be 100 and sub-
sequent INSERTs will add 10 to the last
value. So the identity column values gener-
ated will be 100, 110, 120, 130, and so on.

The GENERATED clause provides
two options to control how DB2 will gen-
erate identity column values. GENERAT-
ED ALWAYS indicates that DB2 will
always generate a value for the column
when a row is inserted into the table.
GENERATED BY DEFAULT indicates
that DB2 will generate a value for the col-
umn when a row is inserted into the table
unless a value is specified. The IBM man-
uals recommend using ALWAYS unless
you are using data propagation.

This all sounds wonderful, but there
are problems with identity columns. Some
of these problems include:

There are problems loading data into
a table with an identity column defined as
GENERATED BY DEFAULT. (The next
identity value stored by DB2 to be
assigned may not be the correct value that
should be generated.)

LOAD INTO PART x is not allowed
if an identity column is part of the parti-
tioning index.

What about environments that
require regular loading and reloading
(REPLACE) for testing? The identity col-
umn will not necessarily hold the same val-
ues for the same rows from test to test.

When you decide to use GENERAT-
ED BY DEFAULT, you cannot change
back to GENERATED ALWAYS.

The IDENTITY_VAL_LOCAL
function returns the value used for the last
insert to the identity column. But it only
works after a singleton INSERT. This
means you cannot use INSERT INTO
SELECT FROM, or LOAD, if you need
to rely on this function.

If the CYCLE clause is specified,
when the maximum value is reached for
the identity column, DB2 will cycle back
to the beginning to begin reassigning val-
ues - which can be problematic. The alter-
native is NO CYCLE, which means that
DB2 just stops generating values – which
also might be a problem.

DB2 will not verify that an IDENTI-
TY column value is unique unless a
unique, single-column index is defined on
the identity column.

If the CACHE option is specified
DB2 will pre-allocate values in memory.
But in the event of a system failure all
cached values that were not assigned will
be lost, and thus never used.

So, as with most things, the answer to
“should I use them” is, of course, "it
depends!" Identity columns can be useful,
depending on your specific needs, even in
their current implementation. If you can
live with these caveats, then identity
columns might be useful to your applica-
tions. However, in general, these "prob-
lems" make identity columns very much a
niche solution. And IBM has hinted (at
the May 2002 IDUG conference) that
some of the problems with IDENTITY
columns will be addressed over time in
upcoming versions of DB2.

Synopsis
These are just a few of the many mis-

understandings that exist in DB2-land. In
future issues we’ll look at some of the oth-
ers. But until then, let’s be careful “out
there!”

