Lol R L

BY CRAIG S. MULLINS

The conventional DB2 wisdom says that creating one view per base

table is the way to go. But beware—that advice could spell trouble

FEBRUARY 1991
44

n ELATIONAL DBMSs
in general, and DB2
specifically, provide a very useful
feature for creating a virtual
table—it’s called a view. The usual
recommendation is to create one
view for each base table in a DB2
application system. To my mind,
however, this is a highly dubious
practice. The rationale for using
that method is that it insulates ap-
plication programs from database
changes; so all programs will be
written to access views instead of
base tables. While this sounds like
a good idea in principle, indis-
criminate view creation can be
dangerous.

WHY VIEWS?

Like all relational databases, an
operation on a DB2 table produces
another table. A view is a virtual
table—a representation of the data
stored in one or more tables. It's
defined using the SELECT, PROJECT,
and JOIN operations. Because a view
is represented internally to DB2 by
SQL commands, not by stored
data, views can be defined using
the same SQL statements that ac-
cess data in base tables. The SQL
comprising the view is executed
only when the view is accessed.

|

This allows the creation of logical
tables that consist of a subset of
columns from a base table. When
the data in the underlying base ta-
bles changes, the changes are also
reflected in any view that’s de-
rived from the base table. Views
can also be created based on multi-
ple tables using joins. Figure 1
gives an example of view creation
and access.

Almost any SQL that can be
issued natively can be coded into a
view. There are exceptions, how-
ever: A view that contains the FOR
UPDATE OF clause, an ORDER BY specifi-
cation, or the UNION operation can’t
be defined.

Views can be accessed by
SQL in the same way tables are.
But again, strict rules exist about
the types of views that can be up-
dated. Figure 2 lists the restric-
tions on view updating.

Many DBAs, consultants, and
analysts recommend creating one
view per base table for new DB2
applications. These views consist
of one SQL statement that re-
trieves all of the columns in the
base table. Figure 3 gives an ex-
ample of a base table and the view
that would be created for it. Be-
cause this type of view doesn’t

break any of the rules for updata-
bility, all SQL commands can be
executed against it. What is the
reason for this recommendation?
Increased data independence.

I will present the arguments
that proponents of the view meth-
od usually make for creating one
view per base table.

ONE VIEW PER DB2 TABLE

O If you add a column to a ta-
ble, you don’t have to change the
program.

The reasoning behind this
assertion is that programs can be
written so that they’re indepen-
dent of the table columns. If a pro-
gram retrieves data using SELECT *
or if it inserts rows, no knowledge
of new columns would be re-
quired as long as the column is
added correctly.

The SELECT * statement will re-
turn all the columns in a table. If a
column is added to a table after
the program is coded, the program
will fail to execute. This happens
because the variable necessary for
storing the newly retrieved col-
umn will not be coded in the pro-
gram. If the program were using a
view, however, no failure would
occur, because the view would

DATABASE PROGRAMMING & DESIGN
45

ARTWORK: TAYLOR GIBSON

only have the columns as pre-
viously defined.

If the program were coded to
update views instead of base ta-
bles, the INSERT statement would
continue to work, as well. Howev-
er, the column that was added to
the base table must allow default
values. The default value could be
either the null value or the DB2
default when a column is defined
as NOT NULL WITH DEFAULT. The INSERT to
the view would continue to work
even though the view doesn’t con-
tain the new column. The row
would be inserted and the new
column would be assigned the ap-
propriate default value.

O If you remove a column from
a table, you don't have to change the
application program.

When you remove a column,
the table must be dropped and re-
created without the column. You
could recreate views that access
the table being modified by substi-
tuting a constant value in place of
the deleted column. Application
programs that access the views
will now return the constant in
place of the column that was
dropped.

O If you split the table into two
tables, you can change the view, there-
by avoiding changing the program.

Sometimes, you must split
one DB2 table into two tables. This
is usually done to increase effi-
ciency of retrieval. For example,
consider a table with 10 columns.
Fifty percent of the queries against
the table access the first six col-
umns. The remaining 50 percent
access the other four columns and
the key column. By splitting the
table, you’d improve access: one
table containing the first six col-
umns and the second table con-
taining the remaining four col-
umns and the key column.

If the programs were using a
view, the view could be recoded to
be a join of the two new tables.
Then the programs would not
have to be changed to reflect the
modification; only the view would
change.

O If you combine two (or more)
tables into one, you can change the
view, and thereby avoid changing the
programi.

This is the inverse of the pre-
vious situation. If two tables are al-
most always joined together, then

ol i

e s T T S e S e T e
Creating the ACCOUNT MANAGER View

ACCT Table

ACCT_NO CHAR(6)
ACCT_DESC VARCHAR(40)
ACCT_MGR CHAR(2)
ACCT_TYPE CHAR(1)
ACCT_OPEN DT DATE

MGR Table

MGR_NO CHAR(2)
MGR_NAME VARCHAR(50)

Figure 1. Creating and using views.

you can increase efficiency by cre-
ating a “prejoined” table. You
avoid the overhead incurred by
joining the two tables. A straight
SELECT can now be issued against
the new table instead of a join.

If the application programs
are using views in this instance,
you could modify the views to be
subsets of the new combination ta-
ble. In this way you could avoid
program changes.

O Views provide a layer of pro-
tection between the application and
the data.

Sometimes people just feel
safer using views instead of base
tables.

THE REBUTTAL

For every reason given for creat-
ing one view per base table, a bet-
ter case can be made for not doing
so. The following list explains
why the reasoning behind the
points made in the previous sec-
tion was unsound.

O If you add a column to a ta-
ble, you don't have to change the
progran.

If you code your application
programs properly, you won’t
have to change them if you add a
new column. Proper program cod-
ing means coding all SQL state-
ments with column names. If col-
umn names can be supplied in an
SQL statement, then the columns
should always be explicitly speci-
fied in the SQL statement. This ap-
plies in particular to the INSERT and
SELECT statements and is true
whether you're using views or
base tables.

The SELECT * statement should
never be permitted in an applica-
tion program. Every DB2 manual
and text issues this warning—and

with good reason. All DB2 objects

CREATE VIEW userid.ACCT_MGR
(ACCT_NO, MANAGER, NAME) AS
SELECT ACCT_NO,ACCT_MGR , MGR_NAME
FROM userid.ACCT, userid.MGR
WHERE ACCT_MGR = MGR_ND;

Using the ACCOUNT MANAGER View

SELECT ACCT_NO, MANAGER. NAME
FROM userid.ACCT_MGR;

can be dropped and recreated or
altered. If a DB2 object on which a
program relies is modified, then a
SELECT * in that program will cease
to function.

This caveat does not change
because you are using views. Even
views can be dropped and recreat-
ed. If the program uses SELECT * on a
view and the view has changed, it
will not continue to work until it’s
modified to reflect the changes
made to the view.

It would be a mistake to
think that you'll never modify a
view. You might want to for sever-
al reasons. Some companies estab-
lish a policy of keeping views in
line with their base tables. This
means the view changes when the
table changes. Others use views
for security. As security rules
change, so will the views.

If you eliminate the SELECT *
statement, you effectively elimi-
nate this reason for using views.
An INSERT statement will work
against a base table if the column
names are provided in the INSERT
statement. As long as the new col-
umn will allow a default value,
then the program will continue to
work.

O If you remove a column from
a table, you don't have to change the
application program.

This is patently untrue. If
you remove the column from the
base table, you must remove it
from the view. If you don’t, and a
constant is added to the view, then
the view can no longer be updat-
ed. Also, all queries and reports
will be returning a constant in-
stead of the old column value,
which will jeopardize the system’s
integrity.

Users must be able to rely on
the data in the database. If con-

FEBRUARY 1991
46

View Type

Views that join tables

Views that use functions

Views that use DISTINCT

Views that use GROUP BY / HAVING

Views that contain derived data
using arithmetic expression

Views that contain constants

Restriction
DUI
DUI
DUI
DUI

-

Views that eliminate columns without

default value

Restriction Legend

D = cannot delete
V = cannot update
I = cannot insert

Figure 2. Non-updatable view types.

stants are returned on screens and
reports that users rely on, confu-
sion will ensue. Also, if the data
(that is now a constant) was used
in any calculations, then those val-
ues are also unreliable. These un-
reliable calculation results could
be generated and then inserted
into the database, propagating bad
data.

The removal of data from a
database must be analyzed in the
same manner as any change. Sim-
ply returning constants is no solu-
tion; it will cause more problems
than it solves.

O If you split the table into two
tables, you can change the view, and
thereby avoid changing the program.

If a table needs to be split
into two, you must have a good
reason for doing so. As mentioned
earlier, this decision is usually
prompted by performance consid-
erations. To increase efficiency
you must change the underlying
SQL to take advantage of the ta-
bles that have been split. Queries
accessing columns that are only in
one of the two new tables need to
be modified to access only that
table.

According to the reasoning
of the view supporters, no changes
will be made to programs. If no
changes are made, then perfor-
mance will actually suffer due to
these changes. Think about it. The
views are now joins instead of
straight SELECTs. No SQL code has
changed. Every straight SELECT is
now doing a join, and we all know
that joins are less efficient than a
straight SELECT.

It's essential to understand
that a change of this magnitude re-

quires a thorough analysis of your
application code. When table col-
umn definitions change, SQL and
programs change as well; it can’t
be avoided. A trained analyst or
DBA must analyze all of the appli-
cation’s SQL. This includes SQL in
application PLANs, QMF queries,
and dynamic SQL. Queries that ac-
cess columns from both of the new
tables need to be made into a join.
You do not want to do indiscrimi-
nate joins, however. Queries that
access columns from only one of
the two tables must be recoded as
a straight SELECT against that table
to achieve the performance gain.

Also, any programs that up-
date the view must be changed.
Remember, views that join tables
can’t be updated.

If after investigating all of
the queries you determine that
some queries will require joining
the two new tables, then you can
create a view to accommodate
those queries. The view can even
have the same name as the old ta-
ble to minimize the program
changes that will be required. You
can even give the two tables new
names. The view will be created
only when it's needed. This is a
much more reasonable approach
to change management.

It'’s also worth noting that a
change of this magnitude is rarely
attempted after an application has
been moved to production. The
people who recommend using
views rarely consider this fact.

O If you combine two or more
tables into one, you can change the
view and thereby avoid changing the
progrant.

If you simply combine the

Base Table

CREATE TABLE userid.BASE-TABLE
(COLUMN1 CHAR(10) NOT NULL,
COLUMN2 DATE NOT NULL WITH
DEFAULT,

COLUMN3 SMALLINT,

COLUMNA VARCHAR(50)

) IN DATABASE db-name:

Base View

CREATE VIEW userid.BASE-VIEN
(COL1, COL2, COL3, COL4) AS
SELECT COLUMN1. COLUMN2, COLUMN3,
COLUMNA
FROM userid.BASE-TABLE;
T r——
Figure 3. One view per base table.

two tables into one and change the
views to be subsets of the new pre-
joined table without changing the
SQL, you will have once again de-
graded performance. Most queries
need to access both tables. The
queries that were joins are still
joins, but now they're joining the
new views. Remember that the
views are just subsets of one table,
so these queries are joining this
one table to itself. This is usually
less efficient than joining the two
tables as they were previously
defined.

Once again, you have to do a
great deal of analysis before mak-
ing a change of this magnitude.
You must investigate all applica-
tion SQL; if you determine that
queries access only one of the two
old tables, then views can be de-
fined with the same name as the
old tables. You can give the new
prejoined table a new name, mini-
mizing program modification.

O Views provide a layer of pro-
tection between the program and the
data.

No, they don’t. If you create
one view for each base table, all
types of SQL can be performed on
the views. Update and retrieval
SQL can be performed in the same
manner on the views as it could
on the base tables. There is no re-
alistic basis for this reasoning
whatsoever.

GENERAL VIEW RULES
To ensure a proper, reasonable ap-
proach to view creation, let me of-
fer three basic rules.

The usage rule: Create a view
only when it achieves a specific,
rational goal. Each view must have

DATABASE PROGRAMMING & DESIGN
47

el R e

ACCT Table Dropping the ACCOUNT MANAGER View

ACCT_NO CHAR(B) DROP VIEW userid.ACCT_MGR:

ACCT_DESC VARCHAR(40)

ACCT_MGR CHAR(2)

ACCT_TYPE CHAR(1)

ACCT_OPEN.DT DATE Recreating the ACCOUNT MANAGER View
CREATE VIEW userid.ACCT_MGR
(ACCT_NO. MANAGER, NAME, INIT) AS

MGR Table SELECT ACCT_NO, MGR_NO, MGR_NAME,

MGR_NO CHAR(2) INITIAL

MGR_NAME VARCHAR(50) FROM userid.ACCT, userid.MGR

INITIAL CHAR(1) WHERE ACCT_MGR = MGR_NOD;

o e e e e s &S S =SS]
Figure 4. Adding a column and changing a view.

a specific usage before it’s created.
That usage must also be logical.
There are three types of usage that
are truly logical: security, access,
and data derivation.

Views created to provide se-
curity on tables will effectively
create a logical table that’s a subset
of rows, columns, or both, from
the base table. By eliminating re-
stricted columns from the column
list and providing the proper
predicates in the WHERE clause, you
can create views to allow access to
only those portions of a table that
each user is allowed to access.

Views created for access rea-
sons should guarantee efficient ac-
cess to the underlying base table
by specifying indexed columns
and proper join criteria. By coding
views to always specify columns
that are indexed in the WHERE
clause, you gain efficient access.
Coding join logic into a view also
increases access efficiency, because
the join will always be done prop-
erly. A proper join is done by cod-
ing the WHERE clause to compare the
primary key of one table to the
foreign key of another.

The third type of view that
provides a valid usage is one that
contains data-derivation formulas.
An example is a view containing a
column named TOTAL_SALARY,
which is created by selecting
SALARY+COMMISSION.

Any other usages for views
should be scrupulously analyzed.
Chances are, they’re not good us-
ages at all.

The proliferation avoidance rule:
Do not needlessly proliferate DB2
objects. Every DB2 object that is
created constitutes additional en-
tries in the DB2 catalog. Creating
needless views clutters the catalog.

The larger the DB2 catalog tables
become, the less efficient your en-
tire DB2 system will be.

The synchronization rule: Keep
all views logically pure by syn-
chronizing them with the under-
lying base tables.

Whenever you change a base
table, you should analyze all views
that are dependent on that base ta-
ble to determine if the change will
affect them. All views should re-
main logically pure. The view was
created for a specific reason (see
the usage rule). It should therefore
remain useful for that specific pur-
pose. You can accomplish this only
by ensuring that all subsequent
changes that are pertinent to a
specified usage are made to all
views that satisfy that usage.

For example, say you have a
view that satisfies an access usage.
Figure 1 shows a view that satis-
fies a join between a table of ac-
counts and a table of managers. If
a column is added to the MGR ta-
ble specifying the manager’s ini-
tial, it should also be added to the
ACCT_MGR view, because it's
pertinent to that view’s specific
use: to provide information about
each account’s manager. Figure 4
shows the steps necessary to drop
and recreate the view.

The synchronization rule re-
quires that you institute strict
change-impact-analysis procedures.
Every table change should follow
these procedures. Simple SQL que-
ries can help with change-impact
analysis. These queries should pin-
point QMF queries, application
plans, and dynamic SQL users
who could be affected by specific
changes. Figure 5 lists queries that
will assist in the change-impact-
analysis process. Always execute

To find all views dependent on the
table to be changed:

SELECT DCREATOR. DNAME

FROM SYSIBM.SYSVIEWDEP

WHERE BCREATOR = ‘Table Creator’
AND BNAME = ‘Table Name':

To find all QMF queries that access
the view:

SELECT DISTINCT OWNER, NAME. TYPE
FROM Q.0BJECT-DATA
WHERE APPLDATA LIKE ‘%VIEW Name%;

To find all plans that are dependent
on the view:

SELECT DNAME

FROM SYSIBM.SYSPLANDEP

WHERE BCREATOR = “VIEW Creator’
AND BNAME = "VIEW Name’:

To find all potential dynamic SQL
users:

SELECT GRANTEE

FROM SYSIBM.SYSTABAUTH

WHERE TCREATOR = “VIEW Creator’

AND TTNAME = "VIEW Name';
o e e]
Figure 5. Change-impact-analysis queries.

these queries to determine what
views might be impacted by
changes to base tables.

By following these three
rules, you’ll establish a sound
framework for view creation in
your organization.

IN SUMMARY

There’s no adequate reason for en-
forcing a strict rule of one view
per base table for DB2 application
systems. Indeed, the evidence rec-
ommends against using views in
this manner. The one-view theory
is rooted in the mistaken assump-
tion that applications can be total-
ly ignorant of underlying changes
to the database. Change-impact
analysis must always be done
when tables are modifed. Failure
to do so means your applications
will perform poorly. The idea that
views eliminate the need for
change-impact analysis is a myth
that needs to be debunked. Other-
wise, you'll encounter major per-
formance problems.]

Craig S. Mullins is a database and sys-
tems administrator specializing in DB2 at
Mellon Bank in Pittsburgh. He is also a
cofounder and vice president of ASSET
Inc., a customized-software and technical
consulting firm.

FEBRUARY 1991
48

