SQL UPDAT

DB2 users who are avoiding dynamic SQL should reconsider its advantages

HEN PERFORMANCE

is an issue, don’t use

dynamic SQL. Such

statements can be

found in DB2 texts,
articles, and presentations every-
where. But unlike generic “rules
of thumb,” the real-life decision
whether to use static or dynamic
SQL isn't so simple. With each new
release of DB2, prohibiting dynamic
SQL becomes even harder to justi-
fy as the costs of using it decline.
It's time we take a closer look at
some of dynamic SQL’s aspects be-
fore deciding to maintain the com-
mon—but dubious—blanket rejec-
tion of its potential.

What makes dynamic SQL dif-
ferent from static SQL? Static SQL
is optimized prior to program ex-
ecution. Each static SQL statement
in a program is analyzed and opti-
mized during the DB2 BIND process.
During this process, the DB2 opti-
mizer finds the best access path,
coding it into a package or plan.
When the program executes, the
package or plan is retrieved and
the stored access path is executed.

However, dynamic SQL is op-
timized at run time. Prior to its ex-
ecution, a dynamic SQL statement
must be processed by the DB2 Op-
timizer so that an optimal access
path can be created. (This is the
PREPARE process.) You can think of
PREPARE as a dynamic BIND. Many an-
alysts believe this process is too
costly for inclusion in production
application programs. Hopefully, 1
can help you reconsider this issue.

DYNAMIC SQL OVERVIEW
Four types of dynamic SQL exist:
O EXECUTE IMMEDIATE
O Non-SELECT
O Fixed-list SELECT
O Varying-list SELECT.

BY CRAIG S. MULLINS
Dismissing
Dynamic

Let us briefly review these
types. EXECUTE IMMEDIATE will (implicit-
ly) prepare and execute complete
dynamic SQL statements coded in
host variables. Its drawbacks are
that it can’t be used to retrieve data
using the SELECT statement; and be-
cause the PREPARE is implicit within
the EXECUTE IMMEDIATE, optimization
must occur whenever the statement
is executed.

Non-SELECT can be used to pre-
pare and execute SQL statements
in an application program. PREPARE
and EXECUTE are separated, so once a
statement is prepared, it can be ex-
ecuted over again without reopti-
mization. However, as its name im-
plies, non-SELECT dynamic SQL can’t
issue the SELECT statement.

The third type of dynamic
SQL is fixed-list SELECT. It can be
used to PREPARE and execute SQL SE-
LECT statements where we know in
advance the exact columns to be
retrieved by the application pro-
gram. We must know what these
columns are at the time the pro-
gram is being coded, and they can't
change during execution. This sit-
uation is necessary to create the
proper working-storage declaration
for host variables in your program.

If you don’t know in advance
the columns to be accessed, you
can use the fourth dynamic SQL
type, varying-list SELECT. In this case,

pointer variables maintain the se-
lected columns list. Though vary-
ing-list SELECT is the most complicat-
ed, this dynamic SQL type provides
the most flexibility for dynamic St
LECT statements. Changes can be
made “on the fly” to tables, col-
umns, and predicates. Because ev-
erything about the query might
change during one program invo-
cation, the number and type of host
variables needed to store the re-
trieved rows can’t be known be-
forehand, adding complexity to ap-
plication programs.

REASONS TO RECONSIDER
The cost of the dynamic PREPARE must
be added to the overhead of all dy-
namic SQL programs. However,
this cost may not be quite as ex-
pensive as many believe. Running
some queries using SPUFI with the
DB2 Performance Trace switched
on produced results for the cost of
a PREPARE. The SQL statements pre-
pared for the four tests shown in
Figure 1 are described as follows:

1. A simple SELECT of one col-
umn from one table containing two
predicates.

2. A join of two tables select-
ing two columns and using two
predicates.

3. A join of two tables select-
ing four columns and using three
predicates.

4. A three-table join selecting
all columns.

Of course, the results will
vary based upon environment, the
type of dynamic SQL, and the com-
plexity of the statement being pre-
pared. Before proceeding with a
dynamic SQL project, perform some
similar tests at your shop to deter-
mine the potential impact. To ob-
tain this type of information, you
must start Performance Trace Class

DATABASE PROGRAMMING & DESIGN
57

Elapsed time
. TCB time

TP

" 0.2436 0:5633
0.04520 0.09391

Test #4.

CTest#3
0.8477 0.9326
0.13073 0.19333

. . .) . L
FIGURE 1. The cost of a PREPARE. (All measurements are in seconds.)

B A PSS A

(3) and also run DB2 Presentation
Manager SQL Trace Reports (or its
equivalent with another perfor-
mance monitoring tool).

Another misconception sur-
rounding dynamic SQL is that a
PREPARE must occur every time SQL
is executed dynamically, which isn’t
true. If proper dynamic SQL types
are chosen and the program is cor-
rectly coded, you only need one
PREPARE for each SQL statement. Of
course, EXECUTE MMEDIATE dynamic SQL
always prepares the statement pri-
or to execution. For other types of
dynamic SQL, the PREPARE can be
isolated outside the loop perform-
ing the SQL statement. So, over-
head is reduced by lowering the
number of times dynamic binding
occurs. However, if you want the
access path to change, you must is-
sue a PREPARE. But, for many appli-
cations, a single PREPARE is sufficient
for each dynamic SQL statement
within the program.

Another reason to consider
dynamic SQL is performance im-
provement. Dynamic SQL queries
accessing data not distributed uni-
formly could outperform an equiv-
alent static SQL statement. Why?
Because dynamic SQL can employ
nonuniform distribution statistics
(NUDS) when it isdetermining ac-
cess paths. NUDS are stored in the
DB2 Catalog in .SYSFIELDS (DB2
v. 2.3), or in .SYSCOLDIST and
SYSCOLDISTSTATS (DB2 v. 3).

Consider the following query:

SELECT FIRST _ NAME, ADDRESS, TITLE
FROM EMPLOYEE
WHERE LAST _ NAME = :HOST VARIABLE

In a static SQL environment, dif-
ferent values will be placed into

FIGURE 2. Explanation of results for queries 1 and 2.

'Table name '.TB,n;n.- S Mcol. Sortnewcomp. .
T RO W06 U0

the host variable. However, the ac-
cess path never changes since it
was determined prior to execution
at BND time. In a dynamic SQL en-
vironment, however, the access
path can change based upon the
value specified for the predicate.
Consider the following two queries:

Query 1

SELECT FIRST _ NAME, ADDRESS, TITLE
FROM EMPLOYEE

WHERE LAST _ NAME = ‘SMITH'

Query 2

SELECT FIRST __ NAME, ADDRESS, TITLE
FROM EMPLOYEE

WHERE LAST _ NAME = ‘JAWORSK'

If we assume the data in the EMPLOY-
EE table is skewed so more employ-
ees are named Smith than Jaworski,
then a different access path may
be chosen for each query when us-
ing dynamic SQL. The actual ac-
cess paths for each query using dy-
namic SQL are shown in Figure 2.
Note that the query accessing the
name occurring more frequently
chose an access path specifying LIST
PREFTECH, while the other didn’t. In
this case, LIST PREFTECH can reduce the
amount of I/O by sorting the RIDs
before accessing the data pages,
thereby enhancing performance.

MATHEMATICAL REASONS
Even if decreasing costs don't com-
pel you to use dynamic SQL, one
situation exists where dynamic SQL
should almost always be chosen
over static SQL: When a user can
choose numerous combinations of
predicates at run time.

Consider the following: What
if, for a certain query, 20 predi-
cates are possible. The program’s

" TS lock Preftech

s

user is permitted to choose up to
six predicates for any given request.
How many different static SQL
statements must be coded to satis-
fy these specifications?

First, let us determine the
number of different ways you can
choose six predicates out of 20. To
do so, we must use combinatorial
coefficients. So, if n is the number
of different ways, then:

n=1(20X19 X 18 X 17 X 16 X
15) /(6 X5X 4X3X2X1)

n = (27,907,200) / (720)
n = 38,760

This answer shows the total num-
ber of different ways we can choose
six predicates out of 20 if the predi-
cate ordering doesn’t matter. (For
all intents and purposes, it doesn’t.
For performance, you may want to
put the predicate with the highest
cardinality within each type of op-
erator first, but we won’t concern
ourselves with this approach here.)
However, since the specifications
clearly state a user can choose up
to six, we must add in the differ-
ent ways to choose:

O Six predicates out of 20:
(20 X 19 X 18 X 17 X 16 X
15)/(6 X5 X4 X3X2X1)=
38,760.

O Five predicates out of 20:
(20 X 19 X 18 X 17 X 16)/(5 X 4
X 3 X 2X1)=15504.

O Four predicates out of 20:
(20 X 19 X 18 X 17)/(4 X 3 X 2
X 1) = 4,845.

O Three predicates out of 20:
(20 X 19 X 18)/3 X 2 X 1) =
1,140.

O Two predicates out of 20:

MAY 1994
58

S s Ay

i U PO

e o *

—— s e

B U YOS S

- s . < e A ot e e 8 4t N0 4 e vat gme ¥

(20 X 19)/(2 X 1) = 190.

O One predicate out of 20:
20/1 =20

This tally brings the grand
total of static SQL statements that
must be coded to 60,459. In this sit-
uation, if static SQL is forced upon
us, we have one of two options:

1. Code for 40 days and 40
nights, hoping to write 60,459 SQL
statements.

2. Compromise on the design
and limit the users’ flexibility.

I guarantee that 99.99 percent
of the time the second option will
be chosen. My solution is abandon
static SQL, using dynamic SQL in
this situation. How would this de-
cision ease the development situa-
tion? Consider these advantages:

O With dynamic SQL, the 20
predicates must be coded only once;
in working storage.

O As the program runs, the
application logic can build the com-
plete SQL statement based upon
user input.

O The Database Request
Module’s (DBRM’s) size decreases
dramatically. The DBRM for the
static SQL program would be huge
if it contained all 60,459 SQL state-
ments. Even if a compromise num-
ber is reached, chances are the
DBRM will be large. I guarantee it
will be larger than the DBRM for
the dynamic SQL program, regard-
less of the compromise number.

O Systemwide performance
may improve due to large pack-
ages and plans using the EDM pool
less often.

O Although additional run-
time overhead is required to per-
form dynamic PREPARE, performance
usually won’t suffer. Remember,
for SQL issued against nonuniform
data, performance improved.

In performance terms, degra-
dation must be phenomenal to offset
the savings accrued by minimized
applications-development time.

To sum up, when should you
consider using dynamic SQL?

O When the program’s nature
is truly changeable, as in the earli-
er example.

O When the columns to be
retrieved can vary from execution
to execution. This case is similar to
the earlier example, where a user
might choose multiple predicate
combinations.

O When benefit can be ac-

crued from interacting with another
dynamic SQL application. For ex-
ample, those applications using the
QMF callable interface.

] When SQL must access non-
uniform data. You can use the
NUDS stored in the DB2 Catalog to
generate different access paths based
on different predicate data values.

BAD BECOMES GOOD

Dynamic SQL isn’t always bad. As
your DB2 applications-development
needs mature, consider dynamic
SQL when it makes sense. Don't

pledge allegiance to a “no dynam-
ic SQL at our shop” rule without
realizing its huge potential for the
applications-development life-cycle
and providing flexibility in DB2
program design.

I don’t mean to imply dynam-
ic SQL should be used if unmerit-
ed. Hang on to your common sense,
but remember, rules with “never”
in them are “usually” unwise! [

Craig S. Mullins is a researcher and de-
veloper in the education department of
Platinum Technology Inc.

LANGUAGE
XTENSIONS

If you like REXX - you'll love RLX

« rapid application and
tool development

« deploy secure,
high performance
load modules

« proven in mission critical
applications world wide

For a free trial call
800-776-0771
Telsphone: Fax:
Ausiratie, NZ {+61) 3788 2001 {+61)3 788 2322
Deigum, Neth., Lux {+32) 27.23.95.67 {+32) 27.22.93.00
Fance {+33) 140.99.35.33 {+33) 148.00.30.20
Gemany, A, CH {+49) 898403721 (+48) BO 640 1884
HX, Teiwan, Phipns (+852) 827 1182 {+852) 627 0008
Scandravia {+46) 40 16.07.22 {+48) 40 18.07.58
Souh Alrica (PN 114633349 (+27) 11 4634061
Souwh Amedics {+55) 212656370 (+55) 21 245-2575
UK, trelznd (+44) 71 7234053 (o44) 71 2024274

DB2 interface

embed SQL req and DB2 d
in REXX EXECs that run in TSO, ISPF,
batch and NetView

REXX Compiler

improve the performance of your REXX
EXECs while protecting them from
modification

SQL Compiler

endow your REXX SQL applications
with the industrial strength perf

and security of static SQL

VSAM access

process SMF datasets and all other
ESDS, XSDS and RRDS files natively
in REXX

REXX/SDK

access Global Variables, MVS supervisor

services, RACROUTE facilities, PDS /O
— and much more — from our SDK

DB2/ISPF objects

flow SQL query results directly into
ISPF tables then display and process
those results on scrollable ISPF panels

DB2 editing

browse and edit DB2 tables with a full
featured, ISPF style editor that supports
Query By Exaomple and static SQL

=i
Relational Architects International

Tel: (USA) 201 420-0400 Fax: (USA) 201 420-4080

CIRCLE 21 ON READER SERVICE CARD

DATABASE PROGRAMMING & DESIGN
59

