## A DB2 Performance Tuning Roadmap: A High-Level View on Managing the

**Performance of DB2 for z/OS** 



Craig S. Mullins Mullins Consulting, Inc. 15 Coventry Court Sugar Land, TX 77479

http://www.craigsmullins.com

http://www.CraigSMullins.com/DPTR.pdf

# **1. The Tuning Progression**

## **Problem Resolution**

- Application
  - SQL
  - Host Language Code
- Database
  - Indexes
  - Database and Index Organization
  - Database Design (normalization / denormalization)
- DB2 Subsystem
  - ZPARMs, Pools, Locking, IRLM, DDF, etc.
- Environment
  - Network
  - TP Monitor (CICS, IMS/TM)
  - Operating System



## DB2 Performance Tuning Roadmap

© 2005, Craig S. Mullins (Mullins Consulting, Inc.)

## 2. Basic Tuning Rules

- 80% of the results of tuning come from 20% of the tuning effort -and-
  - 20% of your DB2 applications cause 80% of your problems
- Tune one thing at a time
  - How else do you know whether the action helped or not?
- All tuning optimizes:
  - CPU, I/O or concurrency



#### **DB2 Performance Tuning Roadmap** © 2005, Craig S. Mullins (Mullins Consulting, Inc.)

## **Application Code and SQL**

- Most relational tuning experts agree that the majority of performance problems with applications that access a relational database are caused by poorly coded programs or improperly coded SQL...
  - as high as 70% to 80%



# **3. Application Tuning: SQL**

- Simpler is better, but complex SQL can be efficient
- In general, let SQL do the work, not the program
- Retrieve the absolute minimum # of rows required
- Retrieve only those columns required never more
- Always provide join predicates (i.e. no Cartesian products)
- Favor Stage 1 and Indexable predicates
  - Host variable data type/length should match column
- Avoid tablespace scans for large tables (usually)
- Avoid sorting when possible:
  - indexes for ORDER BY and GROUP BY
  - judicious use of DISTINCT
  - UNION ALL versus UNION (if possible)

## 3. Application Tuning: Stage 1 and 2



STAGE 2 - Evaluated after data retrieval (non-sargable) via the RDS (Relational Data Services) which is more expensive than the Data Manager.

STAGE 1 - Evaluated at the time the data rows are retrieved (sargable). There is a performance advantage to using Stage 1 predicates because fewer rows are passed to Stage 2 via the Data Manager

#### DB2 Performance Tuning Roadmap © 2005, Craig S. Mullins (Mullins Consulting, Inc.)

# Avoid Black Boxes

## 4. Application Tuning: Optimization



#### © 2005, Craig S. Mullins (Mullins Consulting, Inc.)

OPTHINT in PLAN\_TABLE

## 4. Application Tuning: EXPLAIN Analysis



## **5. Application Tuning: Locking**

- Avoid deadlocks by coding updates in the same sequence regardless of program
- Issue data modification SQL statements as close to the end of the UOW as possible
  - the later in the UOW the update occurs, the shorter the duration of the lock
- Encourage Lock Avoidance
  - ISOLATION(CS) / CURRENTDATA(NO)
  - Can be used only by read only cursors
- Use LOCK TABLE judiciously
- Consider ISOLATION(UR) to avoid locking

## 6. Application Tuning: Commit

Avoid Bachelor Programming Syndrome



Fear of COMMITing

Plan and implement a COMMIT strategy

 or experience TIMEOUTs and DEADLOCKs



## 7. Application Tuning: Program

- Do not embed efficient SQL in inefficient program logic
  - <u>Classic example</u>: finely tuned, efficient SQL inside of a program loop that executes 3,510,627 times!
- Let SQL do the work when possible
  - e.g.) do not code "program" joins
- Sign of trouble: SQL followed by lots of IF...ELSE or CASE statements
- If you are only going to retrieve one row, consider coding a singleton SELECT (usually)

## 8. Application Tuning: Online vs. Batch



- When designing online transactions, limit the amount of data to be retrieved to a reasonable amount
  - No one reads hundreds of pages/screens online!
- Limit online sorting and joining (but be reasonable)
- Consider OPTIMIZE FOR 1 ROW to disable list prefetch
  - With LP DB2 acquires a list of RIDs from a matching index, sorts the RIDs, & accesses data by the RID list
  - Can be very inefficient for a multiple page transaction



## 9. Database Organization

- Be sure to run RUNSTATS
  - as data volume changes, new data structures added
  - followed by (RE)BIND with /EXPLAIN(YES)
- Review statistics to determine when to REORG
  - NEARINDREF and FARINDREF
  - LEAFDIST, PERCDROP
  - For clustering indexes
    - NEAROFFPOSF and FAROFFPOSF
    - CLUSTERRATIOF
  - Analyze access patterns before reorganizing
    - Random vs. sequential
    - Consider automation

#### **DB2 Performance Tuning Roadmap** © 2005, Craig S. Mullins (Mullins Consulting, Inc.)

## **10. Database Design: The Basics**

- As normalized as possible, but performance before aesthetics; normalization optimizes "update" at the expense of "retrieval"
  - " Don't let data modelers dictate "physical" design
- One table per tablespace (usually)
- Partitioned or segmented over simple TS
   DSSIZE < 4GB unless you definitely need large TS</li>
- Do not create base table views
- Avoid the defaults they are usually wrong
- Determine amount of free space (PCTFREE & FREEPAGE)
  - " Based on volatility don't just let everything default to 10.

## **11. Database Design: Indexes**

- A proper indexing strategy can be the #1 factor to ensure optimal performance
- First take care of unique & PK constraints
- Then for foreign keys (usually)
- Heavily used queries predicates
- Overloading of columns for IXO
- Index to avoid sorting
  - ORDER BY, GROUP BY
- Consider I/U/D implications
- Sequence columns wisely in multi-col indexes
- Avoid indexing variable columns





## **12. Database Design: Data Types**

- Use NULL sparingly
- Use appropriate DB2 data types
  - Use DATE instead of CHAR or numeric for dates
  - Store numeric data using a numeric data type
    - " INTEGER, SMALLINT, DECIMAL, etc.
  - INTEGER versus DECIMAL(x,0)
    - " Control over domain vs. storage requirements
  - "DATE and TIME" versus TIMESTAMP
    - " Ease of use/storage vs. precision/arithmetic
- Compression versus VARCHAR
  - Compression = less overhead (no 2 byte prefix)
  - Compression requires no programmatic handling

# **13. Database Design: Integrity**



- Use DB2 declarative RI instead of program RI (usually)
  - performance and ease of use
  - ensure integrity for planned and ad hoc database modification
- Do not use RI for lookup tables (overkill)
  - consider CHECK constraints vs. lookup tables
- Use triggers only when declarative RI is not workable
  - Triggers are less efficient (usually) than RI
    - <sup>•</sup> but usually better than enforcing in application programs
- Specify indexes on foreign keys

## **14. Database Design: BP, part one**

- Bufferpool allocations do not default everything to BP0
   Explicitly specify a buffer pool for every TS and IX
- Ideas:
  - isolate the catalog in BP0
  - separate indexes from table spaces
  - isolate heavily hit data
  - isolate sort work area
  - optimize BP strategy for your data & app processing mix: sequential vs. random
  - there is no "silver bullet" approach

more on bufferpool tuning coming up!



## **15. Database Design:** Rows & Columns

- Avoid wasted space (page size?)
  - Row length > 4056 requires larger page size
  - Row length 2029 4056 = one row per page
  - Row length < 15 wastes space (max 255 rows/page)</li>
- Sequence columns based on logging
  - Infrequently updated non-variable columns first
  - Static (infrequently updated) variable columns
  - Frequently updated columns last
  - Frequently modified together, place next to each other

#### 16 thru 21

## System & DB2 Subsystem Tuning



## DB2 Performance Tuning Roadmap

© 2005, Craig S. Mullins (Mullins Consulting, Inc.)

## 16. - 19. Subsystem Tuning: Pools

- DB2 uses four types of pools; memory structures to cache data and information to avoid costly disk I/O
  - 16 <u>Buffer Pools</u> used to cache data in memory when it is read from disk.
  - Image: Optimized on the second sec
  - EDM Pool used to cache program details (access paths, dynamic PREPARE, authorization) and database structural information (DBD).
  - Sort Pool used when DB2 must sort data.

## 16. Subsystem: Buffer Pools, part two

- DB2 provides up to 80 buffer pools USE THEM!
  - 4K: BP0 thru BP49 8K: BP8K0 thru BP8K9
  - 16K: BP16K0 thru BP16K9- 32K: BP32K thru BP32K9
- Consider reserving a bufferpool for tuning
  - Move problem objects there to isolate for tuning
- DB2 V8 significantly increase buffer pool storage
  - " 1TB new limit for buffer pools
  - " No more hiperpools
  - " No more bufferpools in data spaces
- Monitor hit ratio: % times a page is found in the buffer pool
  - The higher the ratio the better

(GETPAGES – PAGES READ) / GETPAGES

 $\rightarrow$  SYNC I/O + ASYNC I/O

## **16. Buffer Pools: Tune Thresholds**

## • Variable Thresholds



#### DB2 Performance Tuning Roadmap

© 2005, Craig S. Mullins (Mullins Consulting, Inc.)

## **16. Buffer Pools: Monitor Thresholds**

## • Fixed Thresholds



#### **DB2 Performance Tuning Roadmap**

© 2005, Craig S. Mullins (Mullins Consulting, Inc.)

# 17. Subsystem: RID Pool

- One RID pool for all processing.
- The default RID pool size is 4 MB. Can be changed.
- RID Pool is used for:
  - enforcing unique keys while updating multiple rows
  - sorting RIDs during the following operations:
    - List prefetch, including single index list prefetch
    - <sup>•</sup> Access via multiple indexes
    - " Hybrid Joins





#### **DB2 Performance Tuning Roadmap** © 2005, Craig S. Mullins (Mullins Consulting, Inc.)

## **18. Subsystem: EDM Pool**



General ROT: shoot for 80% efficiency; (1 in 5 DBD/SKPT/SKCT needs to be loaded)

## DB2 Performance Tuning Roadmap

© 2005, Craig S. Mullins (Mullins Consulting, Inc.)

## **19. Subsystem: Sort Pool**

- Sort Pool value is the maximum size of the sort work area allocated for each concurrent sort user.
- The default Sort Pool size is 1 MB. It also can be changed on install panel DSNTIPC.
- In general, the larger the Sort Pool, the more efficient sorting will be.
- Need to understand the way DB2 sorts to understand tuning.

## **19. DB2 Tournament Sort**

## • DB2 uses tournament sorting...

- rows to be sorted are passed through a tree structure, entering at the bottom; each row is compared to rows already in the tree and the lowest (ASC) or highest (DESC) are moved up the tree
- when a row emerges from the top it is placed in an order set of rows in memory (Sort Pool)
- when a row does not fit in the current ordered set (out of range) the complete ordered set (called a run) is moved to a work file
- logical work files are in memory; if too big, moved to DSNDB07
- all runs are merged to form a sorted results set





# 20. Subsystem: Logging

- DB2 will only run as fast as the log
- Log Tuning Parameters
  - Input Buffer Size
  - Output Buffer Size
  - Write Threshold
- Log Configuration
  - Dual Active Logging is the preferred configuration
  - Preferably with each log defined to separate devices and on separate channels
- DB2 rollbacks from log data on DASD
  - Consider keeping archive logs on DASD
  - Migrate archive logs to tape after a specified period of time (HSM)

e log Waits occur if OUTBUFF is too small

At the Write Threshold, data

is written to the Active Log



## 20. Subsystem: System Checkpoint

- Periodically DB2 takes a checkpoint, containing:
  - currently open unit of recoveries (UR) within DB2, all open page sets, a list of page sets with exception states, and a list of page sets updated by any currently open UR
- Specified in the CHKFREQ parameter in DSNZPARM
  - " Number of log records written
  - " Or, as of V7, number of minutes
- Can be changed dynamically using:
  - " SET LOG or (temporary)
  - SET SYSPARM (V7) (permanent)

15 minute intervals for checkpoints during peak processing times.

CHKFREQ replaced LOGLOAD in V7

# 21. Subsystem Tuning: IRLM

- MAXCSA = 250×(LOCKS PER USER)×(MAX USERS).
  - <sup>•</sup> 250 bytes of storage for each lock.
- ITRACE=NO
  - " do not use ITRACE; instead, use DB2 lock traces
- PC=NO vs. PC=YES DB2 V8 eliminates PC parameter
- <sup>↑ CPU ↓ ECSA ···</sup> <u>YES</u>: locks h, the IRLM private address space; DB2 uses cr → emory for IRLM requests
- ↓ CPU ↑ ECSA ··· NO: locks held in the extended common storage area
  - DEADLOK
    - 1. The number of seconds between two successive scans for a local deadlock
    - 2. The number of local scans that occur before a scan for global deadlock starts





#### **DB2 Performance Tuning Roadmap** © 2005, Craig S. Mullins (Mullins Consulting, Inc.)

## **22. Environment**

- Operating System
  - version, memory, JCL, RACF, etc.
- TP Monitors
  - CICS, IMS/TM, C/S GUI, web, etc.
- Networking
  - TCP/IP, SNA, DRDA, stored procedures, etc.
- DASD
  - storage, ESS/Shark, placement, etc.

## **Summary**

Application

Database

DB2 Subsystem

Environment

Do one thing at a time and;

You *can* tune DB2!

**DB2 Performance Tuning Roadmap** © 2005, Craig S. Mullins (Mullins Consulting, Inc.)



## **Craig S. Mullins**

Mullins Consulting, Inc. 15 Coventry Court Sugar Land, TX 77479

(281) 494-6153

http://www.craigsmullins.com

craig@craigsmullins.com

© Copyright 2005, Mullins Consulting, Inc.



# Announcing DB2PORTAL.com

- New, free web portal for DB2 DBA, programmers, & users
  - Useful articles and links to DB2 information
  - The only site devoted completely to mainframe DB2
- <u>http://www.DB2portal.com</u>

| DB2PORTAL.com<br>DB2 RESOURCES FOR THE MAINFRAME |                                                |
|--------------------------------------------------|------------------------------------------------|
| REGISTER FOR SITE UPDATES:                       | O HTML O Text Submit                           |
| topics                                           |                                                |
| - DB2 GENERAL INTEREST                           | - <u>DB2 &amp; ERP</u>                         |
| - DB2 CERTIFICATION                              | - DB2 STORED PROCEDURES, TRIGGERS & FUNCTIONS  |
| - DB2 PERFORMANCE                                | - DB2 CODING & DEVELOPMENT                     |
| - DB2 DATA SHARING                               | - DB2 SECURITY                                 |
| - DB2 VERSION INFORMATION                        | - DB2 DATA WAREHOUSING & BUSINESS INTELLIGENCE |
| - DB2 WEB AND eBUSINESS                          | - DB2 CROSS PLATFORM                           |
| - <u>DB2 &amp; CICS</u>                          | - <u>DB2 BOOKS</u>                             |
| - DB2 DATABASE ADMINISTRATION                    | - DB2 SITES                                    |
| - DB2 TOOLS AND UTILITIES                        |                                                |