
www.idug.org 41

One of the most fertile grounds for disagreement between DB2
professionals is the appropriate usage of views. The manner in
which views can be utilized to provide the greatest benefit can

be a very controversial issue. Some analysts promote the liberal cre-
ation and usage of views, whereas others preach a more conserva-
tive approach.

When properly implemented and managed, views can be fantastic
tools that help to ease data access and simplify development.
Although views are simple to create and implement, few organiza-
tions take a systematic and logical approach to view creation. And
therein lies the controversy. A strategic and reasonable policy guid-
ing the creation and maintenance of views is required to avoid a
muddled and confused mish-mash of view usage. Basically, views
are very useful when implemented wisely, but can be an adminis-
trative burden if implemented without planning.

VIEW OVERVIEW
Before discussing a proper view implementation strategy, let’s
review the basics of views.

All SQL access to a DB2 table results in another table. This is a
requirement of the relational model. A view can be considered to be
a logical table. A view is a “logical” representation of data that is
“physically” stored in other tables (and perhaps other views as
well).

Views are defined using SQL and are represented internally to DB2
by SELECT statements, not by stored data. The SQL inside the view
is executed only when the view is accessed and views can be
accessed by SQL in the same way that tables are – using SQL.
Certain limitations on data modification exist depending upon the
type of view, though. Views that join tables, use functions, specify
DISTINCT, or use GROUP BY and HAVING may not be updated,
inserted to or deleted from. Additionally, inserting is prohibited for
the following types of views:

• views using constants,

• views having columns with derived data in the SELECT-list, and

• views that do not contain all columns defined as NOT NULL from
the tables from which they were defined.

Almost any SQL that can be issued natively can be coded into a
view. There are a few exceptions, though. A view cannot be defined
that contains any of the following clauses:

• FOR UPDATE OF

• ORDER BY

• OPTIMIZE FOR n ROWS

As of DB2 Version 7, one of the biggest limitations to view usage
was removed, namely the ability to specify UNION and UNION ALL
in the view definition. Prior to V7, UNION was not permitted in a
view definition. This capability greatly expands the functionality of
views and the administrative options available when creating tables.
For example, it is now possible to “partition” using a view by creat-
ing several, separate tables that “look the same,” and then creating
a view that unions them together – in essence creating a pseudo-
partitioned “table” using views.

VIEW IMPLEMENTATION RULES
After you understand view mechanics, you should develop guide-
lines for view creation in order to limit administrative burden. The
following rules can be used to ensure that views are created in a
responsible and useful manner at your shop. These rules were
developed over a number of years as a result of reviewing imple-
mentations and working with views in many different environ-
ments. There are three basic view implementation rules:

• The View Usage Rule,

• The Proliferation Avoidance Rule, and

• The View Synchronization Rule.

These rules define the parameters for efficient and useful view creation.
Following them will result in a DB2 shop implementing views that are

BY CRAIG S. MULLINS

T h e B u f f e r P o o l

A View Review

www.idug.org42

effective, minimize resource consumption, and have a stated, long-last-
ing purpose.

There are likely more uses for views than are presented here, so do not
needlessly worry if you do not see your favorite use for views covered
in this article.

THE VIEW USAGE RULE
The first rule is the view usage rule. Simply stated, your view cre-
ation strategy should be goal-oriented. Views should be created only
when they achieve a specific, reasonable goal. Each view should
have a specific application or business requirement that it fulfills
before it is created. That requirement should be documented some-
where, preferably in a data dictionary or possibly as a remark in the
DB2 Catalog.

Although this rule seems obvious, views are implemented at some
shops without much thought as to how they will be used. This can
cause the number of views that must be supported and maintained
to continually expand until so many views exist that it is impossible
to categorize their uses. And the time needed to maintain and
administer the system increases as the number of views increase.

There are five basic uses for which views excel. These are:

• to provide row and column level security,

• to ensure efficient access paths,

• to mask complexity from the user,

• to ensure proper data derivation, and

• to rename tables and/or columns.

Let’s examine each of these uses.

SECURITY
One of the best reasons to create a view is to support data security.
Views can be created that provide a subset of rows, a subset of
columns, or a subset of both rows and columns from the base table.

How do views help provide row and column level security? Consider
an EMPLOYEE table that contains all of the pertinent information
regarding an enterprise’s employees. Typically, name, address, posi-
tion, age, and salary information would be contained in such a
table. However, not every user will require access to all of this infor-
mation. Specifically, it may become necessary to shield the salary
information from most users. You can accomplish this by creating a
view that does not contain the salary column and then granting
most users the ability to access the view instead of the base table.
The salary column will not be visible to users of the view.

Or perhaps you need to implement security at the row level.
Consider a table that contains project information. Typically this
would include project name, purpose, start date, and who is respon-
sible for the project. Perhaps the security requirements of the proj-
ects within your organization deem that only the employee who is
responsible for the project can access their project data. By storing
the authorization ID of the responsible employee in the PROJECT
table, a view can be created using the USER special register such as

the one shown below:

The USER special register will contain the primary authorization ID
of the process initiating the request. So, if user DBAPCSM issues a
SELECT statement against the MY_PROJECTS view, only rows
where RESPEMP is equal to DBAPCSM will be returned. This is a
fast and effective way of instituting row level security.

By eliminating restricted columns from the SELECT list and provid-
ing the proper predicates in the WHERE clause, views can be creat-
ed to allow access to only those portions of a table that each user
is permitted to access.

EFFICIENT ACCESS
Views can also be used to ensure optimal access paths. By coding
efficient predicates in the view definition SQL, efficient access to
the underlying base tables can be guaranteed. The use of stage 1
predicates, proper join criteria, and predicates on indexed columns
can be coded into the view.

For example, consider the following view:

By coding the appropriate join criteria into the view definition SQL
you can ensure that the correct join predicate will always be uti-
lized. Of course, this technique becomes more useful as the SQL
becomes more complex.

COMPLEXITY
Somewhat akin to coding appropriate access into views, complex
SQL can be coded into views to mask the complexity from the user.
This can be extremely useful when your shop employs novice DB2
users (whether those users are programmers, analysts, managers or
typical end users).

Consider the following rather complex SQL that implements rela-
tional division:

www.idug.org 43

This query uses correlated subselects to return a list of all projects
in the PROJACT table that require every activity listed in the ACT
table. By coding this SQL into a view called, say
ALL_ACTIVITY_PROJ, the end user will need only to issue the fol-
lowing simple SELECT statement instead of the more complicated
query:

SELECT PROJNO
FROM ALL_ACTIVTY_PROJ;

Now isn’t that a lot simpler?

DERIVED DATA
Another valid usage of views is to ensure consistent derived data by
creating new columns for views that are based upon arithmetic for-
mulae. For example, creating a view that contains a column named
TOTAL_COMPENSATION which is defined by selecting SALARY +
COMMISSION + BONUS is a good example of using derived data in
a view.

COLUMN RENAMING
As you can tell from looking at the sample views shown in the other
sections, you can rename columns in views. This is particularly use-
ful if a table contains arcane or complicated column names. There
are some prime examples of such tables in the DB2 Catalog.
Consider the following view:

Not only have we renamed the entity from SYSPLANDEP to the
more easily understood name, PLAN_DEPENDENCY, but we have
also renamed each of the columns. Isn’t it much easier to under-
stand PLAN_NAME than DNAME, or OBJECT_CREATOR than
BCREATOR? Views can be created on each of the DB2 Catalog tables
in this manner so that your programmers will be better able to deter-
mine which columns contain the information that they require.
Additionally, if other tables exist with clumsy table and/or column
names, views can provide an elegant solution to renaming without
having to drop and recreate anything.

Sometimes older applications were developed without sound DB2
naming conventions. I have actually seen tables where the column
names are A1, A2, A3, etc. Using a view to rename those columns
into something more useful would be a very good idea. The view

option is worth considering because actually renaming the columns
in the table would require dropping and recreating the table – with
all of the change management headache that is entailed with such
a change.

THE PROLIFERATION AVOIDANCE RULE
The second rule is the proliferation avoidance rule. This rule is sim-
ple and to the point: Do not needlessly create DB2 objects that are
not absolutely required.

Whenever a DB2 object is created additional entries are placed in
the DB2 Catalog. Creating needless views causes what I call “cata-
log clutter” – that is, entries in the catalog for objects which are not
needed and/or are not used.

In terms of views, for every unnecessary view that is created DB2
will potentially insert rows into 4 view-specific catalog tables
(SYSVTREE, SYSVLTREE, SYSVIEWS, and SYSVIEWDEP) and 3
table-specific catalog tables (SYSTABLES, SYSTABAUTH, and
SYSCOLUMNS). If uncontrolled view creation is permitted then disk
growth, I/O problems, and inefficient catalog organization can
result.

The proliferation avoidance rule is based on common sense. Why
create something that is not needed? It just takes up space that could
be used for something that is needed.

THE VIEW SYNCHRONIZATION RULE
The third, and final view implementation rule is the view synchro-
nization rule. The basic intention of this rule is to ensure that views
are kept in sync with the base tables upon which they are based.

Whenever a change is made to a base table, all views that are
dependent upon that base table should be analyzed to determine if
the change impacts them. All views should remain logically pure.
The view was created for a specific reason (see the View Usage Rule
above). The view should therefore remain useful for that specific rea-
son. This can only be accomplished by ensuring that all subsequent
changes that are pertinent to a specified usage are made to all views
that satisfy that usage.

For example, say a view was created to satisfy an access usage, such
as the EMP_DEPTS view previously depicted. The view was created
to provide information about employees and their departments. If a
column is added to the EMP table specifying the employee’s social
security number, it should also be added to the EMP_DEPT view if
it is pertinent to that view’s specific use. Of course, the column can
be added to the table immediately and to the view at the earliest
convenience of the development team.

The synchronization rule requires that strict change impact analysis
procedures be in place. Every change to a base table should trigger
the usage of these procedures. Simple SQL queries can be created to
assist in the change impact analysis. These queries should pinpoint
QMF queries, application plans, and dynamic SQL users that could
be using views affected by the specific changes to be implemented.

View synchronization is needed to support the view usage rule. By

www.idug.org44

keeping views in sync with table changes the original purpose of the
view is maintained.

SOMEWHAT OUTDATED USES FOR VIEWS
Over the years views have been used for other purposes that made
sense at the time, but have been rendered obsolete with the advent
of new DB2 functionality. Two of these view usages are to simulate
domain support and to implement queries that access both summa-
ry and detail information in a single row. Let me elaborate on both
and tell you why these usages are outdated.

DOMAIN SUPPORT
Most database systems do not support domains, and DB2 is no
exception. Domains are an instrumental component of the relation-
al model that were in the original relational paper published by Ted
Codd in 1970 — 35 years ago! Although the purpose of this article
is not to explain the concept of domains, a quick explanation is in
order. A domain basically identifies the valid range of values that a
column can contain. Of course, domains are more complex than
this. For example, the relational model states that only columns
pooled from the same domain should be able to be compared with-
in a predicate (unless explicitly overridden).

Some of the functionality of domains can be implemented using
views and the WITH CHECK OPTION clause. The WITH CHECK
OPTION clause ensures the update integrity of DB2 views. This will
guarantee that all data inserted or updated using the view will
adhere to the view specification. For example, consider the follow-
ing view:

The WITH CHECK OPTION clause, in this case, ensure that all
updates made to this view can specify only the values ‘M’ or ‘F’ in
the SEX column. Although this is a simplistic example, it is easy to
extrapolate from this example where your organization can create
views with predicates that specify code ranges using BETWEEN,
patterns using LIKE, or a subselect against another table to identify
the domain of a column.

When inserts or updates are done using these types of views, DB2
will evaluate the predicates to ensure that the data modification con-
forms to the predicates in the view. Be sure to perform adequate test-
ing prior to implementing domains in this manner to safeguard
against possible performance degradation.

Now this method of using views to simulate domains is still viable,
but a better technique to provide the same functionality is available,
namely check constraints. Check constraints place specific data
value restrictions on the contents of a column through the specifica-

tion of an expression. The expression is explicitly defined in the
table DDL and is formulated in much the same way that SQL
WHERE clauses are formulated. Any attempt to modify the column
data (i.e. during INSERT and UPDATE processing) will cause the
expression to be evaluated. If the modification conforms to the
expression, the modification is permitted to continue. If not, the
statement will fail with a constraint violation. This approach is sim-
pler than creating views using the WITH CHECK option.

SINGLE SOLUTION VIEWS
Another past usage for views was to enable solutions where views
were required to solve a data access problem. Without a view, com-
plex data access requests could be encountered that were not capa-
ble of being coded using SQL alone.

Consider the scenario where you want to report on detail informa-
tion and summary information from a single table. Consider, for
example, a report on column details from the DB2 Catalog. For each
table, we need to provide all column details, and on each row, also
report the maximum, minimum, and average column lengths for
that table. Additionally, report the difference between the average
column length and each individual column length. To solve this
problem you could create a view. Consider the COL_LENGTH view
based on SYSIBM.SYSCOLUMNS shown below:

After the view is created, the following SELECT statement can be
issued joining the view to the base table, thereby providing both
detail and aggregate information on each report row:

This works well, but with the advent of table expressions (some-
times referred to as in-line views) this usage of views is obsolete.
Instead of coding the view we can take the SQL from the view and
specify it directly into the SQL statement that would have called the
view. Using our example above, the final SQL statement becomes:

So now we can use a table expression to avoid creating and main-
taining a view.

www.idug.org 45

VIEW NAMING CONVENTIONS
Naming conventions for views can instigate conflict within the
world of DB2 DBAs. But there is really no reason for the issue to be
so contentious. Remember, a DB2 view is a logical table. It consists
of rows and columns, exactly the same as a DB2 table. A DB2 view
can (syntactically) be used in SQL SELECT, UPDATE, DELETE, and
INSERT statements in the same way that a DB2 table can.
Furthermore, a DB2 view can be used functionally the same as a
DB2 table (with certain limitations on updating as outlined in this
article). Therefore, it stands to reason that views should utilize the
same naming conventions as are used for tables. (As an aside, the
same can be said for DB2 aliases and synonyms).

End users querying views do not need to know whether they are
accessing a view or a table. That is the whole purpose of views.
Why then, enforce an arbitrary view-naming standard, such as put-
ting a V in the first or last position of a view name?

DBAs and technical analysts, those individuals who have a need to
differentiate between tables and views, can utilize the DB2 Catalog
to determine which objects are views and which objects are tables.
Most users do not care whether they are using a table, view, syn-
onym or alias. They simply want to access the data. And, in a rela-
tional database, tables, views, synonyms, and aliases all logically
appear to be identical to the end user: collections of rows and
columns.

Although there are certain operations that cannot be performed on
certain types of views, users who need to know this will generally
be sophisticated users. For example, very few shops allow end users
to update any table they want using QMF, SPUFI, or some other tool
that uses dynamic SQL. Updates, deletions, and insertions (the oper-
ations which are not available to some views) are generally coded
into application programs and executed in batch or via online trans-
actions – and technicians do that work (namely, programmers).
Most end users only need to query tables. Now you tell me, which
name will your typical end user remember more readily when he
needs to access his marketing contacts: MKT_CONTACT or VMK-
TCT01?

DO NOT CREATE ONE VIEW PER BASE TABLE
Often times the ridiculous recommendation is made to create one
view for each base DB2 table. This is what I call The Big View Myth.
The reasoning behind The Big View Myth is the desire to insulate
application programs from database changes. This insulation is pur-
ported to be achieved by mandating that all programs be written to
access views instead of base tables. When a change is made to the
base table, the programs do not need to be modified because they
access a view — not the base table.

There is no adequate rationale for enforcing a strict rule of one view
per base table for DB2 applications. In fact, the evidence supports
not using views in this manner.

Although it may sound like a good idea in principle, indiscriminate
view creation should be avoided. The implementation of database
changes requires scrupulous analysis regardless of whether views or
base tables are used by your applications. Consider the simplest

type of database change – adding a column to a table. If you do not
add the column to the view, no programs can access that column
unless another view is created that contains that column. But if you
create a new view every time you add a new column it will not take
long for your environment to be swamped with views. Even more
troublesome is “which view should be used by which program?”
Similar arguments can be made for removing columns, renaming
tables and columns, combining tables and splitting tables.

In general, if you follow good DB2/SQL programming practices, you
will usually not encounter situations where the usage of views ini-
tially would have helped program/data isolation anyway. (For exam-
ple, simply avoiding SELECT * in your programs is usually sufficient
to insulate your programs from changes.) By dispelling The Big
View Myth you will decrease the administrative burden of creating
and maintaining an avalanche of base table views.

ALWAYS SPECIFY COLUMN NAMES
When creating views, DB2 provides the option of specifying new
column names for the view or defaulting to the same column names
as the underlying base table(s). It is always advisable to explicitly
specify view column names instead of allowing them to default,
even if using the same names as the underlying base tables. This
will provide for more accurate documentation.

CODE SQL STATEMENTS IN BLOCK STYLE
All SQL within each view definition should be coded in block style.
As an aside, this standard should apply not only to views but to all
SQL whether embedded in a COBOL program, coded as a QMF
query, or implemented using any other tool. Follow these guidelines
for coding the SELECT component of your views:

• Code keywords such as SELECT, WHERE, FROM, and ORDER BY
such that they stand off and always begin at the far left of a new line.

• Use parentheses where appropriate to clarify the intent of the SQL
statement.

• Use indentation to show the different levels within the WHERE
clause.

MATERIALIZED QUERY TABLES
ARE PHYSICAL VIEWS
We have another type of “view” at our disposal as of DB2 V8 – the
Materialized Query Table, or MQT. Of course, MQTs are not exactly
views, but they are close enough to warrant a quick examination in
this article. In fact, MQTs are so close to being view-like, that Oracle
and SQL Server refer to them as materialized views.

An MQT can be thought of as a view that has been materialized –
that is, a view whose data is physically stored instead of virtually
accessed when needed. Each MQT is defined as a SQL query (simi-
lar to a view), but the MQT actually stores the query results as data.
Subsequent user queries that require the data can use the MQT data
instead of re-accessing it from the base tables. By materializing com-
plex queries into MQTs and then accessing the materialized results,
the cost of materialization is borne only once, when the MQT is
refreshed.

www.idug.org46

But there are potential drawbacks to using MQTs, in terms of data
currency, resource consumption and administration. First of all,
MQTs are not magic; they need to be refreshed when the data upon
which they are based changes. Therefore, for most MQTs the under-
lying data should be relatively static. Additionally, MQTs consume
disk storage. If your shop is storage-constrained you may not be able
to create many MQTs. Finally, keep in mind that MQTs need to be
maintained. If data in the underlying base table(s) changes, then the
MQT must periodically be refreshed with that current data.

There are two methods for creating an MQT: You can create it anew
starting from scratch using CREATE TABLE or you can modify an
existing table into an MQT using ALTER TABLE.

MQTs are fascinating because the DB2 optimizer understands them.
Your queries can continue to reference base tables, but DB2 may
access an MQT instead. During access path selection, the optimizer
examines your query to determine whether replacing your table(s)
with an MQT can reduce query cost. The process undertaken by the
DB2 optimizer to recognize MQTs and then rewrite the query to use
them is called automatic query rewrite (AQR).

EXPLAIN will show whether AQR was invoked to use an MQT. If the
final query plan comes from a rewritten query, the PLAN_TABLE
contains the new access path using the name of the matched MQTs
in the TNAME column. Also, TABLE_TYPE will be set to ‘M’ indicat-
ing an MQT was used.

MQTs are useful when you have to aggregate data in your queries.
With an MQT, the data can be pre-aggregated and stored. Consider
using MQTs for analytical and data warehousing queries.

This overview of MQTs has been brief. Be sure to read the IBM DB2
manuals to understand all of the functionality of MQTs before
implementing them as a solution. They can be quite helpful if used
properly, but you need to know how to properly create and manage
MQTs for them to be useful.

SYNOPSIS
DB2 views are practical and helpful when implemented in a system-
atic and thoughtful manner. Hopefully this article has provided you
with some food for thought pertaining to how views are implement-
ed at your shop. And if you follow the guidelines contained in this
article, in the end, all that will remain is a beautiful view!

Craig S. Mullins, is a data management strategist and direc-
tor of Product Strategy for Embarcadero Technologies. He is
the author of the industry-leading book on DB2 for z/OS, DB2
Developer’s Guide (currently available in its 5th edition), as
well as the only book on heterogeneous DBA practices,
Database Administration: The Complete Guide to Practices
and Procedures. You can contact him via his Web site at
http://www.craigsmullins.com.

ABOUT THE AUTHOR

Flashpoint Consulting Ad here.

