
www.idug.org40

BY CRAIG S. MULLINS

T h e B u f f e r P o o l

A Few SQL Tips
and Techniques

It is always a good idea to keep your bag of SQL tricks filled with
techniques to help you deal with troubling application development
problems. Hopefully you will find something useful in the ensuing
sections as you build your DB2 applications.

SORTING DAYS OF THE WEEK

He re is a neat trick that you can use when you are dealing with days of
the week. Assume that you have a table containing transactions, or
some other type of interesting facts. The table has a CHAR(3) column
containing the name of the day on which the transaction happened;
l e t’s call this column DAY_NAME. So, in this column the only va l i d
values are as follows: SUN, MON, TUE, WED, THU, FRI, SAT.

Now, let’s further assume that we need to query this table and have the
results returned in order by the day of the week. Just like the calendar,
though, we want Sunday first, followed by Mo n d a y, Tu e s d a y, We d n e s-
d a y, and so on. How can this be done? Well, if you write the first query
that comes to mind, the results will obviously be sorted impro p e r l y :

SELECT DAY_NAME, COL1, COL2 . . .

FROM TXN_TABLE

ORDER BY DAY_NAME;

The results from this query would be ordered alphabetically; in
other words

FRI
MON
SAT
SUN
THU
TUE
WED

One solution would be to design the table with an additional
numeric or alphabetic column that would sort properly. By this I
mean that we could add a DAY_NUM column that would be 1 for
Sunday, 2 for Monday, and so on. But this requires a database
design change. Furthermore, it requires additional coding and it is

quite possible that the DAY_NUM and DAY_NAME data will get
out of sync unless a lot of additional constraints are coded.

A better solution uses just SQL and requires no change to the data-
base structures. All you need is an understanding of SQL and SQL
functions – in this case, the LOCATE function. Here is the SQL:

SELECT DAY_NAME, COL1, COL2 . .

FROM TXN_TABLE

ORDER BY LOCATE(DAY_NAME, ‘SUNMONTUEWEDTHUFRISAT’);

To understand how this works we need to know how the LOCATE
function works: it returns the starting position of the first occur-
rence of one string within another string. So, in our example,
LOCATE finds the position of the DAY_NAME value within the
string ‘SUNMONTUEWEDTHUFRISAT’, and returns the inte-
ger value of that position. If DAY_NAME is FRI, the function
returns 16. Sunday would return 1, Monday 4, Tuesday 7, Wednes-
day 10, Thursday 13, Friday 16, and Saturday 19. This means that
our results would be in the order we require.

(No t e : Some other database systems have a function named
INSTR, which is similar to LOCATE.)

Of course, you can go one step further if you’d like. Some queries
may need to actually return the number for the day of week. That
is, 1 for Sunday, 2 for Monday, etc. You can use the same technique
with a twist to return the day of week value given only the day’s
name. To turn this into the appropriate day of the week number
(that is, a value of 1 through 7), we divide by three, use the INT
function on the result to return only the integer portion of the
result, and then add one:

INT(LOCATE(DAY_NAME, ‘SUNMONTUEWEDTHUFRISAT’,)/3) + 1;

Let’s use our previous example of Wednesday again. The LOCATE
function returns the value 10. So, INT(10/3) = 3 and add 1 to get
4. And sure enough, Wednesday is the fourth day of the week.

Keep this technique in mind for when you need to wrestle with
unruly days in your applications.

www.idug.org 41

REMOVING SUPERFLUOUS SPACES

We all can relate to dealing with systems that have data integrity pro b-
lems. But some data integrity problems can be cleaned up using a dash
of SQL. Consider the common data entry problem of extraneous
spaces inserted into a name field. Not only is it annoying, sometimes
it can cause the system to ignore relationships between data elements
because the names do not match. For example, “Craig Mu l l i n s” is not
e q u i valent to “Craig Mu l l i n s”; the first one has three spaces betwe e n
the first and last name whereas the second one only has one.

You can write an UPDATE statement to clean up these type prob-
lems, if you know how to use the REPLACE function. REPLACE
does what it sounds like it would do: it reviews a source string and
replaces all occurrences of a one string with another. For example,
to replace all occurrences of Z with A in the string BZNZNZ you
would code:

REPLACE(‘BZNZNZ’,’Z’,’A’)

And the result would be BANANA. So, let’s code some SQL using
the REPLACE function to get rid of any unwanted spaces in the
NAME column of our EMPLOYEE table. Keep in mind that we
have no idea how many extra spaces there may be in the NAME
columns. One may have two extra spaces, another fifteen extra, and
another only one. So the SQL has to be flexible. Consider this:

UPDATE EMPLOYEE

SET NAME = REPLACE(

REPLACE(

REPLACE(NAME, SPACE(1), ‘<>’)

‘><’, SPACE(0))

‘<>’, SPACE(1));

Wait-a-minute, you might be saying. What are all of those left and
right carats and why do I need them? Well, let’s go from the inside
out. The inside REPLACE statement takes the NAME column and
converts every occurrence of a single space into a left/right carat.
The next REPLACE (working outward), takes the string we just
created, and removes every occurrence of a right/left carat combina-
tion by replacing it with a zero length string. The final REPLACE
function takes that string and replaces any left/right carats with a
single space. The reversal of the carats is the key to removing all
spaces except one – remember, we want to retain a single space any-
where there was a single space as well as anywhere that had multiple
spaces. Try it, it works.

Of course, if you don’t like the carats you can use any two charac-
ters you like. But the left and right carat characters work well visu-
ally. Be sure that you do not choose to use characters that occur nat-
urally in the string that you are acting upon. (I cannot think of
anyone with a carat in their name, can you?)

Finally, the SPACE function was used for clarity. You could have

used strings encased in single quotes, but the SPACE function is
easier to read. It simply returns a string of spaces the length of which
is specified as the integer argument. So, SPACE(11) would return a
string of eleven spaces.

Keep this technique in your bag of tricks for when you need to clean
up dirty DB2 data.

AGGREGATING AGGREGATES

Let’s take a look at one additional SQL technique. This one allows
us to perform aggregations of aggregates. For example, you might
want to compute the average of a sum. This comes up frequently in
applications that are built around sales amounts. Let’s assume that
we have a table containing sales information. Each sales amount has
additional information indicating the salesman, region, district,
product, date, etc.

A common requirement is to produce a report of the average sales
by region for a particular period, say the first quarter of 2005. But
the data in the table is at a detail level, meaning we have a row for
each specific sale.

A novice SQL coder might try to code a function inside of a func-
tion – something like this: AVG(SUM(SALE_AMT)). Of course,
this is invalid SQL syntax. DB2 does not allow aggregate functions
to be nested. But we can use nested table expressions along with
SQL functions to build the correct query.

Let’s start by creating a query to return the sum of all sales by region
for the time period in question, which is the third quarter of 2005.
That query should look something like this:

SELECT REGION, SUM(SALE_AMT)

FROM SALES

WHERE SALE_DATE BETWEEN DATE(‘2005-07-01’)

AND DATE(‘2005-09-30’)

GROUP BY REGION;

Now that we have the total sales by region for the quarter, we can
embed this query into a nested table expression in another query
like so:

SELECT NTE.REGION, AVG(NTE.TOTAL_SALES)

FROM (SELECT REGION, SUM(SALE_AMT)

FROM SALES

WHERE SALE_DATE BETWEEN DATE(‘2005-07-01’)
AND DATE(‘2005-09-30’)

GROUP BY REGION) AS NTE

GROUP BY NTE.REGION;

This works for any of the aggregate functions. The second query
accesses data from the first query, and each uses an aggregate function.

www.idug.org42

Craig S. Mullins is president and principal consultant with Mullins
Consulting, Inc. He is an IBM Gold Consultant, the author of two
books, DB2 Developer’s Guide, 5th ed. and Database Administra-
tion: Practices and Procedures, and can be reached via his Web
site at www.CraigSMullins.com.

ABOUT THE AU T H O R

Index to Advertisers

IDUG Conference 1

HLS Technologies. 3

IT Convergence. 5

BMC Software, Inc.. 7

Relational Architects . . Inside Back Cover

Responsive Systems. Back Cover

Softbase.Inside Front Cover

Summary

In this issue we examined several methods of using SQL and func-
tions to write queries without having to use host language code.
With a sound understanding of SQL, and particularly SQL func-
tions and expressions, you can frequently find novel ways of
addressing problematic requirements using nothing but SQL.

	Pages from Pages 1-12-IDUG_V13N01-Final.pdf
	Pages 13-24-IDUG_V13N01-Final.pdf
	Pages 25-48 - IDUG_V13N01-Final.pdf

