
by Craig S. Mullins

Best Practices for
Optimizing Db2 Performance
A Guide for DBA Managers

WHITE PAPER

Contents
Introduction ��� 1

Technology Trends Drive DBA Management ��� 1

Db2 Performance: At Fifty Thousand Feet ��� 2

Db2 Application Performance ��� 3

Db2 Database Objects and Performance ��� 5

Clustering ��� 6

Maintaining Your Space ��� 7

Db2 Subsystem Performance �� 8

The Complexity of Db2 Performance ��12

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 1

Introduction

Db2 performance tuning and optimization is a complex issue
comprising multiple sub-disciplines and levels of expertise.
Mastering all of the nuances can take an entire career.
Deploying standard best practices can minimize the effort to
achieve efficient Db2 applications and databases.

This white paper outlines the most important aspects
and ingredients of successful Db2 for z/OS performance
management. It offers multiple guidelines and tips for
improving performance within the three major performance
tuning categories required of every Db2 implementation: the
application, the database and the system.

Along the way, we will look at some of the most common
problems that DBAs encounter, and offer tips and guidelines
for assuring effective performance of your Db2 databases
and applications.

Technology Trends Drive
DBA Management

In today’s modern enterprise, information is power; and
database systems are the predominant technology for
storing, managing, and accessing the data that businesses
use to gleen information.

Db2 is one of the leading database systems on the market.
It’s used by 100% of Fortune 100 firms and 80% of the
Fortune 500. Therefore, it is an important component that
drives the most significant businesses in
the world.

Dynamic business requirements force constant change and
overwhelming complexity in the typical IT environment.
Regulatory compliance issues, time-to-market pressures, and
industry consolidations cause turbulence as IT struggles to
keep systems in sync with business demands. But managing
systems becomes even more troublesome as technology
trends evolve. Examples of these trends include business
intelligence, e-commerce, and rapid software versioning.
And, you can expect data growth will continue unabated.

At the same time, the mainframe workforce is aging and
retiring. As the number of mainframe professionals with years
of experience decrease, they must be replaced with younger
technicians – and these technicians require a different
interface than the green-screen, ISPF interface that is still the

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 2

most common mainframe interface around. According to the Mainframe Report from Arcati, Ltd.: “When a (mainframe)
person leaves, it is not simple technical knowledge they take with them but rather twenty years’ intimate and detailed
understanding of core business applications.”1

These trends drive home the need for DBAs to exert constant vigilance over the performance and availability of their
Db2 environment. Any performance slip can impact the business resulting in lost revenue or damaged customer
relationships. Furthermore, it is important to be able to achieve this performance management capability with a
modern, easy-to-use interface. Enterprises cannot reap the full range of benefits from their database systems without
modern, effective performance monitoring and management capabilities.

To improve Db2 performance management, you can use solutions and services that can simplify and automate the
performance management process in a cost effective manner. There are many powerful, Db2 performance monitoring
tools available, but many are difficult to use. As DBA mainframe skills gap continues to widen, more flexible tools and
services can make analyzing Db2 performance easier.

"When a (mainframe) person leaves, it is not simple technical knowledge
they take with them but rather twenty years' intimate and detailed
understanding of core business applications."

Db2 Performance:
at Fifty Thousand Feet

To help meet these challenges, DBAs must possess the necessary tools to
automate the maintenance and performance management of their Db2
environment. But what do we really mean by Db2 performance?

Let’s start by thinking about this question at a high level – a 50,000 foot level,
if you will. Every Db2 application requires three components to operate: the
application, the database and the system itself. The application is the host
language code and SQL that provides each program’s functionality. The
database refers to the database objects that house the application data. And
the system refers to the Db2 subsystem installation and its interfaces to other
system software (e.g. z/OS or CICS). To effectively deliver Db2 performance,
DBAs must be able to monitor and tune each of these components.

Let’s take a look at some of the most common problems that DBAs encounter
when managing each of these components.

1 The Arcati Mainframe Yearbook 2005, “The Mainframe: Forty Years On,” page 7

http://The ROI of Cloud Apps

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 3

Db2 Application
Performance

The first component of Db2 performance is the
application itself. As much as 80% of all relational
database performance problems can be tracked back
to inefficient application code. The application code
consists of two parts: the SQL code and the host
language code in which the SQL is embedded.

Although SQL is relatively easy to learn (at the most
basic level), it is actually quite difficult to master. There
are, of course, some general rules of thumb you can
apply to help you to build efficient SQL statements.
Keep in mind though, that a rule of thumb is helpful as
a general guideline, but shouldn’t be applied in every
situation.

The first major rule of thumb for SQL programming is to
build the SQL to do the work instead of the application
program. This means that you should code the proper
WHERE clauses in your SQL instead of waiting to filter
data in your host program. Additionally, do not treat
Db2 tables like master files. Code SQL joins instead of
multiple cursors where a “master” cursor is read, that
then drives the other cursors. SQL is a set processing
language and it should be coded that way.

One common problem is retrieving more data than is
required. Your SQL statements should retrieve only the
columns required, never more. Each column that has
to be accessed and returned to you adds overhead
that can be avoided if the column is unnecessary.
Sometimes programmers try to use the SELECT *
shortcut – and though that may be fine for quick and
dirty testing, it should never be allowed in production
programs.

It is also important to understand the different types of
predicates and their impact on performance.

A predicate that can be satisfied by the Data Manager
portion of Db2 is referred to as Stage 1. A Stage 2
predicate has to be passed from the Data Manager to
the Relational Data System to be satisfied. The Data
Manager component of Db2 is at a level closer to the
data than the Relational Data System. The earlier in the
process that Db2 can evaluate the predicate, the more
efficient processing will be. So, Stage 1 predicates are
more efficient than Stage 2.

Additionally, a query that can use an index has more
access path options, so it can be more efficient than a
query that cannot use an index. The Db2 optimizer can
use an index or indexes in a variety of ways to speed
the retrieval of data from Db2 tables.

For this reason, try to use indexable predicates rather
than those that are not.

At this point you are probably asking “which predicates
are Stage 1 and which are indexable?” Where predicates
are processed can change from version to version
of Db2. This information is documented in the IBM
Db2 Managing Performance manual,2 which can be
downloaded from the IBM web site free-of-charge.

Another technique for improving performance is to
create indexes to support your ORDER BY and GROUP
BY clauses. If an index is available on the columns you
specify to these clauses, Db2 can use the index to avoid
invoking a sort. That is likely to improve the performance
of your SQL statement.

After the SQL is coded, to ensure proper performance
you can review and interpret access path information
collected using the EXPLAIN command. The EXPLAIN
command can be executed on a single SQL statement
or multiple statements in an entire program. EXPLAIN
captures information about the access paths chosen by
the Db2 optimizer and populates it into a special table
called a PLAN_TABLE.3 The PLAN_TABLE contents are
encoded and a DBA or analyst must interpret that data in
order to determine exactly what Db2 is doing.

"Index tuning can be tricky;
changing an index to improve the
performance of one query can
degrade the performance of other
queries."

2 For Db2 10 for z/OS the manual number is SC19-2978. Predicate
information can be found in Table 66, starting on page 269.

3 Db2 populates more than just the PLAN_TABLE. There actually are
more than a dozen explain tables as of Db2 10 for z/OS. A detailed
list of these tables can be found in the Db2 Managing Performance
manual (SC19-2978) in Appendix B.

http://The ROI of Cloud Apps

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 4

To effectively tune SQL you will require additional
performance metrics than just what is in the PLAN_
TABLE. Based on execution circumstances, Db2 may
have to re-evaluate an access path at run time. For
example, to avoid using RIDs in the event of a RID pool
failure or if there is a lack of storage for a list prefetch
operation.

SQL performance tuning requires an ability to interpret
the contents of the PLAN_TABLE in conjunction with
the SQL code, host language code and information
from the Db2 catalog to judge the efficiency of each
SQL statement. Analysis of the access path information
and additional performance metrics can require a tuner
to make SQL modifications. Perhaps you will need to
modify predicates to influence indexed access, or revise a
statement to use Stage 1 instead of Stage 2 predicates.

An in-depth analysis of your SQL statement can
determine that index changes or additional indexes will
be required. So, you see, application tuning can lead
back to database object tuning. And index tuning can
be tricky; changing an index to improve the performance
of one query can degrade the performance of other
queries.

Build indexes on the predicates of your most heavily-
executed and most important queries. Do not limit the
number of indexes per table. Create as many as are
necessary to improve query performance. But remember
to balance that against your data modification needs. An
index can improve query performance, but it will degrade
the performance of data modification because the index
has to be modified when its underlying data is inserted,
deleted, or updated.

You might also consider overloading indexes by adding
columns to encourage index only access. For example,
if you have a query that is frequently run throughout the
day and it accesses five columns, four of which are in an
index, adding the fifth column to that index allows Db2
to get all of the data from the index alone. Avoiding I/O
to the table space can help to improve performance.

Remember that inefficient SQL coding and improper
indexing are not the only reasons for poor application
performance. An inefficiently designed host language
program can cause poor performance, too. Host
language code is the code written in a programming
language such as Java, COBOL, C, or your programming
language of choice. SQL statements are embedded
into the host language code and it is possible to have a
well-tuned SQL statement embedded into an inefficient
application program.

Once again, to effectively manage the performance of
your Db2 applications requires flexible, and easy-to-use
tools. It is important that you are able to quickly find the
programs that are consuming the most resources. You
do not want to have to wade through pages and pages
of performance reports to find the offending programs;
neither do you want to have to navigate through screen
after screen of options and confusing menus.

The best option is to use a tool or service that works as
a tuning lab for your SQL. You will need the ability to
find the offensive SQL and then be able to play “what
if” scenarios by modifying the SQL and gauging the
performance impact of each change. It is even better if
the tool can provide expert tuning advice to guide you
as you change your SQL statements.

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 5

Db2 Database Objects and Performance

Although many factors contribute to poor database performance, it is particularly important to pay attention to your
database objects. The term database objects refers to the table spaces, tables, and indexes that comprise your Db2
databases.

Of course, the first factor for ensuring efficient database objects is practicing proper database design. This means
starting from a fully-normalized, logical data model. The data model should be used as a template for building your
physical Db2 database, deviating from the model only for performance reasons.

After implementing an effective physical Db2 database, the next step is to ensure that you are capturing statistics
appropriately for the database objects. The use of inaccurate or outdated database statistics by the Db2 query optimizer
often results in a poor choice of query execution plans and hence unacceptably long query processing times. According
to information supplied by IBM’s Silicon Valley Lab at a recent IDUG conference, as many as half of all access path
“problems” presented to IBM’s technical support were caused by inaccurate, outdated, or missing statistics.

Statistics are accumulated by the RUNSTATS utility. You should schedule a regular execution of RUNSTATS for all
dynamic database objects. If the data grows or changes on a regular basis, you need to plan and run the RUNSTATS
utility accordingly. Only by having up-to-date statistics can the Db2 optimizer have the correct information to generate
accurate access paths for your SQL queries.

RUNSTATS also gather additional information about the current state of each object. Of course, Real Time Statistics (RTS)
can be used for this purpose, too. Whenever possible, favor using RTS over other Db2 Catalog statistics because the RTS
values will be more up-to-date and therefore will more accurately reflect the state of your Db2 objects.

At any rate, organization data can be used by your DBA to determine when an object needs to be reorganized. Table
spaces and indexes become disorganized as business users run application programs that insert, update, and delete
data in Db2 tables – causing the once-ordered data to become fragmented. Disorganized data can be particularly
detrimental to the performance of your Db2 systems. To understand how disorganization impacts performance, let’s
review the concept of clustering.

4 Sysplex query parallelism is deprecated in Db2 11 for z/OS.

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 6

Clustering

Each Db2 table can have a single clustering sequence defined for it. This is accomplished with a clustering index. When
clustering is defined, Db2 attempts to maintain the sequence of the rows in the physical order in the table space.

But as data is inserted and modified and pages fill up, there may not be sufficient space available to insert the data in the
proper sequence. So the data is inserted where space exists and clustering begins to break down. As the data becomes
unclustered, the performance of sequentially accessing data in clustering order begins to degrade because more I/O
operations are required to retrieve the data. Running a reorganization will re-cluster the data, and thereby improve
performance.

Clustering is not the only organization detail that can impact performance. You must also keep an eye on other details
such as:

• The percentage of each table space containing data from tables that have been dropped. As this
percentage increases, performance gets worse.

• The leaf distance for indexes, which indicates the average number of pages between successive
index leaf pages. Performance degrades as the leaf distance increases.

• Far-off and near-off pages for indexes, which estimates how many of the rows in the table are
inefficiently located. As the number of far- and near-off rows increases, performance gets worse.

• Near and far indirect references for a table space, which indicate the number of rows that have
been relocated either near (2 to 15 pages) or far away (16 or more pages) from their original
location. This relocation can occur as the result of updates to variable length rows. As the number
of near and far indirect references increases, performance
gets worse.

All of these factors impact the efficiency of your database objects. Failing to monitor and correct organization problems
will cause every application accessing these objects to suffer performance degradation. The wise course of action is
to monitor these statistics. Set thresholds for each that cause a REORG to be scheduled when the threshold value is
reached. For example, monitor the cluster ratio and when it falls below 90%, schedule a REORG.

Creating the appropriate indexes for your Db2 tables and applications is a discipline that spans database and application
tuning. To create appropriate indexes, the DBA must have the SQL that is to be used against the Db2 objects in order to
understand the access patterns. Furthermore, you need to understand your system's workload. This information enables
you to balance index creation and buffer pool placement so that your setup matches what is being run against it.

Usually though, DBAs tend to create indexes before having knowledge of the SQL that will be running against their
tables. Some indexes are required regardless of the SQL being run, for example, to support a primary key or unique
constraint, or to enhance the performance of referential constraints. But the vast majority of your indexes should be to
support SQL in your application code.

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 7

Maintaining Your Space

Of course, there are more severe database
performance problems that you can encounter.
For example, consider the impact of running
out of space to your applications. When a table
space runs out of space and has no more room
to expand, any attempt to add more data will fail.
And a failure is the worst kind of performance
problem – an availability problem.

The best approach to managing the performance
of your Db2 database objects is to use a tool or
service that can help you automate the setup and
monitoring of space and organization thresholds.
If you fail to take this approach, you are probably
either wasting CPU cycles by reorganizing before
it is required or you are incurring performance
problems because you are not reorganizing until
well after it is required. A dynamic, automated
toolset can help reorganize at just the right time
and thereby optimize your resource usage and
your Db2 systems… and to predict outages and
problems so you can resolve the issues before they
happen.

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 8

Db2 Subsystem
Performance
Successfully managing Db2 performance also requires
monitoring and tuning your Db2 subsystems. In order to
deliver consistent system performance, the DBA must
have the tools to monitor, manage and optimize the
resources used by Db2.

Tasks required for system tuning include the proper
allocation and management of memory structures (e.g.,
buffer pools, EDM pool, etc.), storage management,
integration of the DBMS with other system software,
proper usage of database logs, and coordination of
the operating system resources used by the DBMS.
Additionally, the DBA must control the installation,
configuration and migration of the DBMS software. If
the system isn’t performing properly, everything that
uses the system will perform poorly. A poorly performing
system impacts every database application.

Efficient memory usage is one of the biggest struggles
for Db2 performance tuners. Relational database
systems love memory and Db2 uses memory for buffer
pools, the EDM pool, the RID pool and sort pools. The
more efficiently memory is allocated to these structures,
the better Db2 will perform.

Db2 provides 80 different buffer pools that can be
configured to cache data in memory for Db2 programs
to access. Forget about trying to follow a cookie-cutter
approach to buffer pool management. There is no
simple formula to follow that will result in an optimally
buffered system that works for every implementation.
Each shop should create and optimize a buffer pool
strategy for its own data and application mix.

The trick is to tune your buffer pools so that they match
your workload. You also have to ensure that you do
not exceed the memory allocation for your operating
system and platform, or system paging will occur and
performance will suffer.

To configure your buffer pool based on workload, you
need to know how your database objects are accessed.
There are basically two types of access: sequential and
random. An access request is sequential if it starts by
reading one record and continues reading the next
records in sequence; this may or may not reflect the
way the data is actually stored on disk. Random access,
on the other hand, is typified by requests that access a
single record based on a key.

If you have database objects that are accessed primarily
sequentially, you can take advantage of this knowledge
by assigning them to a buffer pool that is configured for
sequential access. This is accomplished by setting that
buffer pool’s sequential steal threshold (VPSEQT), the
parallel sequential steal threshold (VPPSEQT), and the
assisting parallel sequential steal threshold (VPXPSEQT)4
to indicate that access is mostly sequential. These
thresholds dictate to Db2 how much of the buffer pool
should be set for sequential processes.

Consider the VPSEQT parameter, for example. It
specifies the percentage of the buffer pool that should
favor sequential processing. Take for instance, by setting
VPSEQT to 95, Db2 will favor stealing a random page
over a sequential page until 95% of the buffer pool is
filled with sequential pages. VPPSEQT and VPXPSEQT
are specified as percentages of VPSEQT and are used
to specify the sequential steal threshold for parallel
operations.

"To successfully configure your
buffer pools you will need to
be able to determine how
your database objects are
being accessed:sequentially or
randomly."

To successfully configure your buffer pools you will need
to be able to determine how your database objects are
being accessed: sequentially or randomly. Furthermore,
you will need to have a method of monitoring the
performance of those buffer pools once configured.
Each buffer pool has additional thresholds associated
with it that provide usage and control information about
buffer pool operations.

http://The ROI of Cloud Apps

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 9

You will want to monitor the prefetch disabled
threshold, especially for buffer pools that are tuned
for sequential access. This threshold kicks in when
90% of the buffer pool pages are unavailable.
When this threshold is reached, Db2 no longer
initiates prefetch operations and will cancel prefetch
operations in progress.

Additionally, you will need to watch for the data
manager critical threshold. It is reached when 95%
of the buffer pool pages are unavailable. At this
point Db2 will access pages once for each row that
is retrieved or updated in that page. This should
be avoided at all times. Basically, when you hit this
threshold and you retrieve or update more than one
row on the same page, Db2 will invoke a separate
page-access operation for each access that will cause
severe performance degradation.

Finally, you will need to monitor the immediate write
threshold. When 97.5% of the buffer pool pages are
unavailable, Db2 writes updated pages as soon as
the update is complete. In other words, writes are
performed synchronously instead of asynchronously.
This causes an increase in the number of write I/Os
performed by Db2.

If any of the last three thresholds are reached, there
are only two methods of making changes to alleviate
the problem: either increase the size of the buffer
pool or reallocate the database objects to other
buffer pools. Remember, larger buffer pool sizes are
not always more efficient.

Db2 is not the only consumer of memory in your
system, so take care when allocating buffer pool
memory.

A good buffer pool monitoring technique is to
monitor the buffer pool hit ratio for each of your
buffer pools. The hit ratio can be calculated as
follows:

((GETPAGES – SUM OF ALL PAGES READ) /
GETPAGES) * 100

The “sum of all pages read” must account for
synchronous and asynchronous I/O. This ratio tells
you the percentage of times that a requested page
was available in memory. When a page is available in
memory Db2 does not have to read the page from
disk and performance improves. The larger the hit
ratio number, the better.

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 10

Up to this point we have been more worried about reading data, than writing it. But there are thresholds that need
to be tuned that control how modified data is written from the buffer pools back to disk. These are the deferred
write thresholds (DWQT and VDWQT).

DWQT is set as a percentage of the buffer pool that can be occupied by updated pages and in-use pages. The
default value is 50%, but this is usually too high for most sites. When the percentage of unavailable pages exceeds the
threshold, asynchronous writes are scheduled for the updated pages. VDWQT is similar to DWQT, but for a single data
set; its default is 10% (and that is likely to be too high as well).

By lowering your deferred write thresholds your Db2 subsystem will have regular asynchronous writes of updated pages
to disk. Pages that are frequently referenced will remain in the buffer pool even if updates are written out to disk. But
never set VDWQT higher than DWQT; doing so would have no effect because the pages for each data set also apply to
the overall percentage.

Another consumer of memory in your Db2 subsystem is EDM storage, which is used for caching internal structures used
by Db2 programs. EDM storage is composed of five components, each of which is in a separate storage area:

As a general rule, you should shoot for an 80% hit rate for DBDs and skeletons in EDM storage. Another way of stating
this is that only one out of every five times that a DBD/skeleton is required should it need to be loaded into memory.

It is important to monitor EDM usage because an EDM Pool failure can bring Db2 to a screeching halt. If there is no
place to cache the structures needed for a new iteration of a program to run, then that program will wait. And so will you.

• EDM RDS pool below: A below-the-bar
pool, which contains the part of the
cursor tables (CTs) and package tables
(PTs) that must be below the bar.

• EDM RDS pool above: An above-the-
bar pool that contains the part of the
PTs and CTs that can be above the bar.

• EDM DBD pool: An above-the-bar
pool that contains database descriptors
(DBDs).

• EDM statement pool: An above-the-
bar pool that contains dynamic cached
statements.

• EDM skeleton pool: An above-the-bar
pool that contains skeleton package
tables (SKPTs) and skeleton cursor
tables (SKCTs).

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 11

Memory allocation is not the only component of Db2 subsystem tuning. You will also need to be able to view information
about locking to resolve lock timeout and deadlock situations, as well as to be able to configure the locking system
parameters (DSNZPARMs) appropriately.

Actually, having a method to quickly and easily view the DSNZPARM settings for your Db2 subsystem is a necessity –
especially for those times when you are in the middle of resolving a difficult problem.

Determining the cause of locking problems can be particularly troubling. When wait time is excessive, performance will
degrade. A vigilant DBA Manager must be capable of tracing the lock list to determine if it is properly sized, checking
the average time that applications are waiting (and why), and figuring out how many locks are allocated for a database.

Keep in mind, too, that this is a high-level paper on Db2 performance management but there are many more
components required to achieve proper Db2 system performance. Other system elements requiring attention include
allied agent (CICS, TSO, etc.) tuning, monitoring disk I/O, tuning logging, and Parallel Sysplex configuration and
management for Db2 data-sharing shops.

Keeping an eye on so many performance monitoring and tuning details can be an overwhelming task without a tool that
can gather and visually represent the diagnostic information in an organized fashion.

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 12

Conclusion

To reach your Db2 performance management objectives you must be able to monitor and tune all three major
components of your Db2 environment: your Db2 applications, database objects, and Db2 subsystems.

A wise DBA manager will deploy integrated performance tools and augment them with skilled services to ensure the
efficient performance of the Db2 environment. Doing anything less will cause performance problems… and all of the
related business problems that go along with them.

For more information on Db2 performance tuning or managed services call Datavail toll-free at (866) 828-7843. Prefer to
chat online? We have experts available 24x7x365 to answer your questions on our chat line. Or let one of our experts call
at your convenience: just email us with your phone number and a good time to talk, and we’ll call you.

The Complexity of Db2 Performance

We have discussed a number of the most common Db2 performance-related issues here. After digesting this
information, you know that Db2 performance management is quite complex. Mastering all of the nuances covered in
this paper is difficult – and remember, these are just the most common problems. Much more needs to be mastered to
ensure efficient Db2 performance.

As the dynamics of the workforce change and new releases of Db2 add features and complexity, the problem is
exacerbated. The bottom line is that software tools that automate the detection and correction of Db2 performance
problems helps simplify Db2 performance management.

Furthermore, database performance tools need to be designed to be easy to use, yet highly functional. As skilled
mainframe professionals retire, they will be replaced with younger technicians who have not had the same level of
exposure to original mainframe systems. These younger technicians will expect to use tools with graphical interfaces,
pull-down menus, and point-and-click functionality. Of what possible use is a complex tool with broad functionality that
no one can figure out how to use?

Best Practices for Optimizing DB2 Performance | © 2017 Craig S. Mullins Page 13

Biography
Craig S. Mullins

Craig S. Mullins is a data management strategist, researcher, and consultant working with
Datavail and its Db2 practice to expand offerings and client base.

He is President and Principal Consultant at Mullins Consulting, Inc. and the publisher of The
Database Site (thedatabasesite.com). He has three decades of experience in all facets of
database management and has worked with Db2 on the mainframe since V1.

About Datavail
Datavail is a company of over 1,000 professionals helping clients build and manage applications and data via a world-class
tech-enabled delivery platform and software solutions across all leading technologies.

India
Powai Office
Datavail Infotech Pvt. Ltd,
A-902, Supreme Business Park,
Hiranandani Gardens, Powai, Mumbai – 400076, Maharashtra

Bangalore Office
Datavail Infotech Pvt. Ltd
Ground floor, South Wing, Maruthi Chambers, Rupena Agrahara,
Hosur Main Road, Bommanahalli, Bengaluru – 560068

Hyderabad Office
Datavail Corporation
1002 – 1003, Manjeera Trinity Corporate, JNTU-Hitech City Road,
K P H B Phase 3, Kukatpally, Hyderabad, Telangana-500072

Sri Lanka
Datavail Corporation
No 341/5, Level 4, M&M Center, Kotte Road, Rajagiriya 10100, Sri Lanka

Contact Us
Corporate Headquarters

Datavail Corporation
11800 Ridge Parkway
Suite 125
Broomfield, CO 80021

303-469-2399

General Inquiries

877-634-9222

info@datavail.com

www�datavail�com | 877�634�9222

