
	

	

W H I T E P A P E R

The Pros and Cons of Database Scaling Options
By Craig S. Mullins

Mullins Consulting, Inc.
http://www.mullinsconsulting.com

http://www.mullinsconsulting.com

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	2	

Table of Contents

Industry Trends Impacting Scalability Needs ... 3

Defining Scalability and Elasticity .. 4

Scalability .. 4

Elasticity .. 4

Types of Database Scalability ... 5

Vertical Scaling .. 5

Horizontal Scaling .. 5

Traditional Database Scalability Methods ... 6

Shared-Disk ... 6

Shared-Nothing .. 7

Database Sharding ... 9

Replication ... 10

A Note on NoSQL Database Systems .. 10

Elastic SQL: An Alternative, Services-Based Approach .. 11

An Example of Elastic SQL Architecture .. 12

Summary .. 14

About the Author .. 15

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	3	

Modern IT organizations rely on the ability to quickly react to changing business trends and
technology forces. The days of long development cycles requiring many months or even years
are in the rear-view window of history. And as systems change, usage changes, and that
requires effective ways to adjust for fluctuations in demand.

Database Management Systems are at the heart of most applications and, as such, the ability
to scale database systems elastically is important. This white paper will examine the various
methods used to accomplish database availability and elasticity, as well as introduce a new
architectural option for database scaling.

Industry Trends Impacting Scalability Needs

Today’s business systems are undergoing a revolutionary transformation to accommodate
digital transformation. There are four over-arching trends that are driving digital
transformation today summarized by the acronym SMAC: social, mobile, analytics and cloud.

Mobile computing has transformed the way most people interact with applications, while social
media has transformed the way people interact with companies and each other. Just about
everybody has a smartphone, a tablet, or both. And the devices are being used to keep people
engaged throughout the day, no matter where they are located. This change means that
customers are engaging and interacting with organizations more frequently, from more diverse
locations than ever before, and at any time around-the-clock. End users are constantly

checking their balances, searching for deals,
monitoring their health, and more from mobile
devices. And their expectation is that they can
access their information at their convenience.

Cloud computing, which is the practice of using
a network of remote servers hosted on the
internet to store, manage, and process data and
applications, rather than a local host, enables

more types and sizes of organizations than ever before to be able to deploy and make use of
computing resources—without having to own those resources. Applications and databases
hosted in the cloud need to be resilient in order to adapt to changing workloads. In addition,
the cloud’s intense distribution of compute and storage resources means that responding to
scale is no longer about just throwing sheer power at the problem, but also about marrying
the right resources in the right location to an individual problem.

Finally, the Big Data phenomenon has boosted the amount of data being created and stored.
The amount and types of data that can be accessed and analyzed continue to grow by leaps
and bounds. And when analytics is performed on data from mobile, social, and cloud
computing, it becomes more accessible and useful by anyone, anywhere, at any time.

Organizations are increasingly
looking to move away from high-
performance static hardware to
dynamically changing, virtual,
commodity infrastructure.

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	4	

In addition, as cloud and container-based environments become ubiquitous, organizations are
increasingly looking to move away from high-performance static hardware to dynamically
changing, virtual, commodity infrastructure that can be purchased or rented in a “pay-as-you-
go” manner or that can be easily reallocated when not in use.

The impact of these forces on our computing infrastructure is that systems need to expand
and contract easily to meet an ever-changing demand. Organizations need to be adaptable
and to be able to scale their systems as workload changes.

Defining Scalability and Elasticity

But why exactly do we care about scalability and elasticity? At a high level, both help to
improve availability and performance when demand is changing, especially when changes are
unpredictable. If the data is not available, applications cannot run. If applications cannot run
or run slowly, the company loses business. Therefore, it is important to be able to ensure that
databases are kept online and operational.

So how do scalability and elasticity help to improve availability and performance?

Scalability refers to the capability of a system to handle a growing amount of work, or
its potential to perform more total work in the same elapsed time when processing
power is expanded to accommodate growth. A system is said to be scalable if it can
increase its workload and throughput when additional resources are added.

A related aspect of scalability is availability and the ability of the DBMS to undergo
administration (e.g. schema changes) and servicing (e.g. upgrades and maintenance)
without impacting applications and end user accessibility. A scalable system can be
changed to adapt to changing workloads without impacting its accessibility, thereby
assuring continuing availability even as modifications are made.

A scalable system can react to evolving needs with adjustable resources to serve a
changing workload without requiring downtime.

Elasticity is the degree to which a system can adapt to workload changes by
provisioning and deprovisioning resources in an on-demand manner, such that at each
point in time the available resources match the current demand as closely as possible.

The goal of elasticity is to match the amount of resources allocated to a service with the
amount of resources it actually requires. This means that both over-provisioning and
under-provisioning can be avoided. Over-provisioning occurs when more resources are
allocated than required, and it should be avoided in a cloud model because the service
provider must pay for all allocated resources, which can increase the cost to cloud

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	5	

customers. With under-provisioning fewer resources are allocated than required, and
this is to be avoided because it typically results in performance problems; severe cases
can look like downtime to the end user, resulting in customers abandoning the
application, which has a financial impact.

From a database perspective, elasticity infers a flexible data model and clustering
capabilities. The greater the number of changes that can be tolerated, and the ease
with which clustering can be managed, the more elastic the DBMS.

Types of Database Scalability

First, let’s look at the ways that databases can be scaled and examine the benefits and
drawbacks of each method. There are two broad categories for scaling database systems:
vertical scaling and horizontal scaling.

Vertical scaling, also known as scaling up, is the process of adding resources, such as
memory or more powerful CPUs to an existing server. Removing memory or changing
to a less powerful CPU is known as scaling down.

Adding or replacing resources to a system typically results in performance gains, but
realizing such gains often requires reconfiguration and downtime. Furthermore, there
are limitations to the amount of additional resources that can be applied to a single
system, as well as to the software that uses the system.

Vertical scaling has been a standard method of scaling for traditional RDBMSs that are
architected on a single-server type model. Nevertheless, every piece of hardware has
limitations that, when met, cause further vertical scaling to be impossible. For example,
if your system only supports 256 GB of memory, when you need more memory you
must migrate to a bigger box, which is a costly and risky procedure requiring database
and application downtime.

Horizontal scaling, sometimes referred to as scaling out, is the process of adding
more hardware to a system. This typically means adding nodes (new servers) to an
existing system. Doing the opposite, that is removing hardware, is known as scaling in.

With the cost of hardware declining, it makes more sense to adopt horizontal scaling
using low-cost "commodity" systems for tasks that previously required larger
computers, such as mainframes. Of course, horizontal scaling can be limited by the
capability of software to exploit networked computer resources and other technology
constraints. And keep in mind that traditional database servers cannot run on more
than a few machines. In such cases, scaling is limited, in that you are scaling to several
machines, not to 100x or more.

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	6	

Horizontal and vertical scaling can be combined, with resources added to existing servers to
scale vertically and additional servers added to scale horizontally when required. It is wise to
consider the tradeoffs between horizontal and vertical scaling as you consider each approach.

Horizontal scaling results in more computers networked together and that will cause increased
management complexity. It can also result in latency between nodes and complicate
programming efforts if not properly managed by either the database system or the application.
That said, depending on your database system’s hardware requirements, you can often buy
several commodity boxes for the price of a single, expensive, and often custom-built server
that vertical scaling requires.

On the other hand, depending on your requirements, vertical scaling actually can be less costly
if you’ve already invested in the hardware; it typically costs less to reconfigure existing
hardware than to procure and configure new hardware. Of course, vertical scaling can lead to
over-provisioning which can be quite costly. At any rate, virtualization perhaps can help to
alleviate the costs of scaling.

Traditional Database Scalability Methods

Let’s turn our attention to traditional methods for achieving scalability in database systems.
Databases scalability is often implemented by clustering. With clustering, multiple servers are
used to serve database requests.

There are two predominant architectures for implementing database clustering: shared-disk
and shared-nothing. At a high level, these names do a reasonable job of describing the nature
of the architecture, but let’s take a more in-depth look into each. Both are forms of horizontal
scaling. Later in this paper, we’ll explore a new architecture that combines many of the
benefits of both of these architectures.

Shared-Disk

With a shared-disk environment
all of the connected systems
share the same disk devices.
Refer to Figure 1. Each processor
still has its own private memory,
but all the processors can directly
address all the disks. This means
that there is no need to break
apart data into separate partitions
because all of the data is shared
in shared-disk implementations.

	

	

	

	

	

	

Figure 1. The shared-disk architecture.

	

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	7	

But it is important to understand that only the disks are shared. Main memory is not
shared; each processor has exclusive access to its memory. Because any processor can
cache the same data from disk, a cache coherency mechanism is necessary to ensure
consistency when multiple nodes modify the data. A distributed lock management
capability is also required to manage the consistency of the data as it is being
requested and modified by multiple network nodes.

A shared-disk implementation offers several benefits including potentially lower cost,
extensibility, availability, load balancing, and relatively simple migration from a
centralized system. However, shared-disk benefits from potentially costly Storage Area
Networks (SANs), which can drive up the cost. Typically, shared-disk clustering tends
not to scale as well as shared-nothing for smaller machines. But with some optimization
techniques, shared-disk is well-suited to larger enterprise processing, as such is done in
the mainframe environment.

The specialized technology and software of the Parallel Sysplex capability of IBM’s
mainframe family makes shared-disk clustering viable for DB2 (and IMS) databases. In
particular, the coupling facility and DB2’s robust optimization technology helps to enable
efficient shared-disk clustering. Mainframes are already very large processors capable of
processing enormous volumes of work. Great benefits can be obtained with only a few
clustered mainframes – whereas many workstation processors would need to be
clustered to achieve similar benefits.

Shared-disk is usually viable for applications and services requiring modest shared
access to data, as well as applications or workloads that are very difficult to partition.

Examples of database systems that implement a shared-disk approach for clustering
include DB2 for z/OS (with Data Sharing), DB2 for LUW (with PureScale), and
Oracle RAC.

 Shared-Nothing

In a shared-nothing environment,
each system has its own private
memory and one or more disks. Refer
to Figure 2. The clustered processors
communicate by passing messages
through a network that interconnects
the computers. In addition, requests
from clients are automatically routed
to the system that owns the resource.
Only one of the clustered systems

	

	

	

	

	

	

Figure 2. The shared-nothing architecture.

	

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	8	

can “own” and access a particular resource at a
time. Of course, in the event of a failure,
resource ownership may be dynamically
transferred to another system in the cluster.

The main advantage of a shared-nothing
architecture is improved scalability. In theory, a shared-nothing multiprocessor can
scale up to thousands of processors because they do not interfere with one another –
nothing is shared. However, in practice, shared-nothing scaling of database systems is
implemented on far fewer nodes. The scalability of shared-nothing clustering makes it
ideal for read-intensive analytical processing typical of data warehouses.

A disadvantage of shared-nothing is that a partitioning scheme must be designed to
apportion the data across the nodes of the database. Data is usually partitioned
horizontally by row. This requires identifying a column (or set of columns) to be used to
split a table into multiple tables, each with a different subset of the rows that were in
the initial table. The scheme may be simple, as when the data matches a segment of
the business. For example, partition 1 stores data about the Western region and
partition 2 stored the Eastern region data. Or the scheme may be more complicated
(such as based on a hash key), especially when there is no easy way to separate the
data in a business-relevant manner. Automatic partitioning is known as sharding (and it
is discussed in an Database	Shardin of this paper).

Remember, the data is not shared, so it must reside on (at least) a single node and
the DBMS must know how to partition and access the data based on the partitioning
scheme. Vertical partitioning, or splitting a table into subsets of columns is also
a possibility.

The shared-nothing approach is based on chopping up the data into smaller subsets
because larger single-image databases that are not partitioned can be more difficult
and costly to administer and query. Additionally, creating and maintaining a very large
database in one place can require high-end, costly computers, whereas partitioning can
be accommodated using multiple, cheaper distributed commodity servers.

But partitioning almost always involves trade-offs. One partitioning scheme may work
well for certain applications, but another scheme works better for others. There is no
universal way to partition data that
optimizes all application usage. As usage
patterns change and evolve and data
volume grows, you may need to
re-address the partitioning scheme to
better accommodate the data in your
database. Repartitioning is a non-trivial

The main advantage of a
shared-nothing architecture
is improved scalability.

A disadvantage of shared-nothing is
that a partitioning scheme must be
designed to apportion the data
across the nodes of the database.

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	9	

exercise that is not conducive for 24/7 processing because it requires DBA and
programmer effort as well as database downtime causing application outages.

Another challenge arises whenever data must be accessed or modified across multiple
partitions. Shared-nothing works well when access and modification is performed only
to a single partition, but whenever data from more than one partition is required,
complexity arises and ACID compliance can break down.

Depending upon the capabilities of the DBMS being used, the partitioning scheme
may allocate data redundantly to more than one node (for failover and availability
requirements).

Examples of database systems that implement a shared-nothing approach for clustering
include Teradata, MySQL, and many NoSQL and NewSQL offerings. Shared-nothing
clustering can be particularly effective for NoSQL databases. This is so for several
reasons. For example, many NoSQL database systems do not support ACID, instead
relying on eventual consistency, which is easier to implement, but can result in
applications and users reading outdated data. Additionally, NoSQL systems typically
work on commodity hardware with no built-in high availability features, like a SAN,
thereby enabling quorum replication to be used for replicating the data to all
pertinent nodes.

Database Sharding

Sharding is often used with a shared-nothing approach to automate partitioning and
management. The word “shard” means a small part of a whole. So database sharding is
a technique for partitioning databases that separates large amounts of data into
smaller, more easily managed parts called shards.

Instead of scaling up, sharding breaks apart data to allow scaling out. Sharding is
similar to horizontal partitioning in that it splits tables by row, but the data is
partitioned across multiple instances of the schema. The primary benefit of sharding
is that the processing workload against a large partitioned table can be spread across
multiple servers.

There are drawbacks to sharding. For example, after sharding, instead of having a
single database to manage, there are now multiple databases each with its own server,
CPU, and memory requirements. Additionally, sharding can negatively impact fault-
tolerance. When one shard goes down, the data on that shard is not accessible. That is
why sharding is also often accompanied by replication to have a duplicate data set
ready for usage in case of failure (Replication).

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	10	

A preordained method for determining how to shard is required; that is, in which shard
each specific row should be placed based on the data and an algorithm that apportions
the data to a specific shard, or partition.

Once the data is sharded, each shard lives in a totally separate logical schema instance.
This can be across physical database servers, multiple data centers, or even across
multiple continents. There is no ongoing need to retain shared access (from between
shards) to the other unpartitioned tables in other shards.

Examples of database systems that implement automatic sharding include Apache
HBase, Couchbase, and Informix.

Replication

In many cases, database systems that support shared-nothing with sharding also
support redundant replicas of data to bolster fault tolerance. Replication involves setting
up a separate copy of the data on a different node.

Of course, if this is all that you do then the data will quickly become stale as the original
data is processed. To remove this problem, the database system provides a replication
engine. When data is changed on the master copy of the data the replication engine
ensures that the changes are replicated to other copies. The exact method for
replication will differ from system to system, and may require reading the database logs
and retrying modifications until they success across all replicas.

Replication across multiple servers can be easy to setup but on-going administration
and management will be required. Of course, replication requires additional storage
(for each replica), as well as additional I/O and CPU usage to support the data
replication process.

A Note on NoSQL Database Systems

NoSQL database systems are growing in popularity for modern workloads such as those
required for mobile and cloud applications. A NoSQL database can offer the high scalability
frequently required for such workloads. But NoSQL is not a panacea.

As mentioned earlier, NoSQL systems often forgo ACID compliance in favor of an alternative
approach known as BASE. ACID is an acronym for Atomicity, Consistency, Isolation and
Durability. Atomicity means that a transaction must exhibit “all or nothing” behavior. Either
all of the instructions within the transaction happen, or none of them happen. Atomicity
preserves the “completeness” of the business process. Consistency refers to the state of the
data both before and after the transaction is executed. A transaction maintains the consistency

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	11	

of the state of the data. In other words, after a transaction is run, all data in the database is
“correct.” Isolation means that transactions can run at the same time. Any transactions
running in parallel have the illusion that there is no concurrency. In other words, it appears
that the system is running only a single transaction at a time. No other concurrent transaction
has visibility to the uncommitted database modifications made by any other transactions. To
achieve isolation, a locking mechanism is required. Durability refers to the impact of an
outage or failure on a running transaction. A durable transaction will not impact the state of
data if the transaction ends abnormally. The data will survive any failures.

NoSQL systems can scale up by relaxing ACID requirements. When atomicity is eliminated you
can reduce lock waits, by dropping consistency you can scale up writes across nodes, or by
dropping durability you can remove disk latency.

Most NoSQL database systems follow the BASE model, where BASE stands for Basically
Available, Soft State with Eventual Consistency. Basically Available means that there is no
guarantee of any specific piece of data being available, but the system will respond to any
request. In a Soft State system changes are constantly happening. But the data you retrieve
at a given point in time may eventually get over-written by more recent data. Eventual
Consistency means that there will be times when the database is in an inconsistent state.
When multiple copies of the data reside on separate servers, an update may not be
immediately made to all copies simultaneously. So the data is inconsistent for a time, but
the database replication mechanism will eventually update all of the copies of the data to
be consistent.

Some applications can tolerate inconsistent data, but many cannot. For this reason, a few
NoSQL database systems provide ACID compliance as an option, and others are working to
support ACID capabilities. Of course, this places the same restrictions on the NoSQL database
systems that are on other ACID-compliant systems, such as relational database systems.

NoSQL systems are also different from relational database systems in that they do not always
offer SQL for data access and modification. But SQL is a standard across the industry and most
users wish to continue to use SQL for data access and modification. And so, once again, many
NoSQL database systems are adding SQL support; albeit, not complete ANSI SQL support in
many cases.

Elastic SQL: An Alternative, Services-Based Approach

So far we have examined the status quo, wherein various architectural alternatives of
achieving improved elasticity and scalability using existing solutions are offered. But each of
these methods has some significant drawbacks: shared-disk requires expensive hardware and
software to achieve, shared-nothing requires partitioning the data that may not match the
requirements of all applications, and NoSQL eliminates ACID and often, SQL. Clearly an

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	12	

alternative approach is needed – one that does not try to work around the shortcomings of the
existing solutions.

Many organizations desire a database platform that maintains industry-standard SQL and ACID
for data integrity, but with an architecture that offers the flexibility and agility to elastically
scale up and down as needed. Fortunately, an elastic SQL database system delivers a
compelling, services-based alternative to traditional approaches that were spun out of a client-
server mindset. There are a number of different approaches to elastic SQL – from a variation
on synchronous replication that relies on global timestamps to a two-tiered approach that uses
multi-version concurrency control. Since the former relies heavily on minimal latency to
operate, we’ll focus primarily on the latter.

There are several aspects of an elastic SQL approach that enable it to deliver scalability while
eliminating many of the drawbacks of the traditional approaches.

An Example of Elastic SQL Architecture

Consider for example, a two-tier architecture that splits the transactional tier and the storage
tier. This is not dissimilar to what you might find in Hadoop, where compute processing is
independent from storage. The transactional tier provides an in-memory, on-demand cache
distributed across multiple servers and potentially even geographically dispersed data centers.
The storage tier uses a set of peer-to-peer coordination messages to manage commit
processing and access data when it is not available in the transactional cache.

This two-tier architecture delivers ACID compliance but separates data durability (the “D” in
ACID) from the transactional processing (which handles the “ACI” in ACID). Such a scalable
architecture is neither as sensitive to disk throughput (like shared-disk), nor does it require
explicit partitioning and sharding (like shared-nothing).

Because transaction processes are deployed separately from storage processes, they each
can be scaled independently of the other. When throughput increases, additional transaction
processes can be started very quickly – even in new geographies. Upon adding another
transaction process, the system authenticates it for processing and balances the workload.
This allows for seamlessly scaling to use the additional transaction processing capability
with no outage. Natural data affinity builds
in the caches based on usage patterns,
speeding performance. If workload
decreases, transaction processes can be
stopped, and the system will rebalance the
workload across the remaining, operational
transaction peers.

The biggest benefit of the Elastic
SQL approach is that it delivers
transactional consistency and
durability with industry-standard
SQL and elastic scale-out simplicity.

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	13	

Similarly, more than one storage process can be started. Doing so results in multiple,
independent, durable copies of the database. When a new storage process is started, the
system automatically synchronizes it with the active database. In some deployments of elastic
SQL, disk I/O can be managed to better support intensive modification requirements. By
determining how much of the data set is controlled by each durability peer (i.e. a subset of the
database rather than the entirety) and how many data copies are managed, you can improve
disk I/O in a manner invisible to the application.

Refer to Figure 3 for an overview of
the elastic SQL architecture.

Since data can be cached in one or more
locations, data needs to be self-replicating
to ensure consistency across all of the
independent transaction and storage tiers.
If a peer needs data that is not in its own
cache, it requests it from the nearest peer
that has it. Disk I/O is only required when
no other peer has the needed data or
during an update, insert, or delete. Each
peer knows the other locations of each
piece of data stored in its own cache and
can therefore coordinate consistency.

In such an architecture, database performance, latency, redundancy, and availability can be
adjusted by bringing peers online and offline as needed, with no downtime. No single peer is
wholly responsible for a given task or piece of data, so any task can fail or be purposefully
shut down without impacting service availability.

Coordination of read/write access to the system is enabled using MVCC, or Multi-Version
Concurrency Control. MVCC works by treating all data as being versioned. This means that
all modification operations create new versions of the data. Each transaction process caches
multiple versions of any given object with new versions pending until the associated
transaction commits. Because data is never changed in-place, updates can be handled
optimistically; a rollback simply drops the pending modification from the cache. By handling
lock management at the row (or group of rows) level, the database can reduce conflict
and interference. As long as the lock manager is not fixed, it can shift location as access
patterns change.

The biggest benefit of the elastic SQL approach is that it delivers transactional consistency and
durability with industry-standard SQL and elastic scale-out simplicity. Although there are many
benefits to an elastic SQL architecture, there are, of course, drawbacks. The strength of Elastic
SQL systems today is in OLTP workloads. That said, it is possible to use Elastic SQL for Hybrid

	

	

	

	

	

	

	

	

	
Figure 3. The Elastic SQL architecture.

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	14	

Transactional Analytic Processing (HTAP); that is, to simultaneously perform both OLTP and
real-time analytic queries without interfering with each other by dedicating separate
transaction processes for each. Since there are different architectural approaches to achieving
Elastic SQL, additional limitations are vendor-dependent.

NuoDB is an example of an elastic SQL database system. Others include Google Cloud Spanner
and CockroachDB, which both rely on global timestamps for consistency coordination. When
evaluating Elastic SQL database systems, be sure to compare and contrast the SQL capabilities
(not all provide the same coverage of SQL) and evaluate successful customer use cases that
match your needs.

Table 1 offers a summary of the capabilities of shared-disk versus shared-nothing clustering
versus elastic SQL, and outlines the basic pros and cons of the three architectural approaches
discussed in this white paper.

Shared-Disk Shared-Nothing Elastic SQL

Adaptability to changing
workloads; load balancing

Can exploit simpler,
cheaper hardware

Uses simpler, cheaper hardware to
adapt to changing workloads.
Automated load balancing

High availability;
failover

High scalability;
more downtime

Continuous availability; resilience to
failure; native support for active-
active deployment; rolling
upgrades; high scalability

Simple ability to scale-in Data partitioning
incompatible with scale-in

Simple ability to scale-in

Performs well in a heavy
read environment

Works well in a
high-volume, read-write
environment

Works well in both heavy read and
mixed read-write environments

Data need not be
partitioned

Data must be partitioned
across the cluster

Data need not be partitioned,
but can be grouped for improved
I/O throughput

Table 1. Shared-Disk Versus Shared-Nothing versus Elastic SQL		

	

	
The	Pros	and	Cons	of	Database	Scaling	Options		 	 	 					 							Page	15	

Summary

Scalability and elasticity are important qualities for database systems in the age of digital
transformation and the cloud. Both shared-nothing and shared-disk architectures have been
around for some time and support scalable systems with varying levels of elasticity. Be sure
to understand the pros and cons of each of these methods before implementing them at
your shop.

Additionally, it is always wise to learn about new capabilities and offerings, such as the Elastic
SQL approach to scalability that eliminates many of the drawbacks of the earlier approaches.

	

About the Author

Craig S. Mullins is a respected database expert and researcher who is president & principal
consultant of Mullins Consulting, Inc. He has worked with multiple database systems and
technologies and his experience spans multiple industries.

Craig is the publisher/editor of The Database Site and he also writes for many computer/IT
publications. His technical articles can be found in many IT/database journals and web sites
including Database Trends and Applications, TechTarget, and others.

Craig is a frequent speaker at IT conferences, having spoken about database issues to
thousands of professionals at conferences including Data Summit, World of Watson,
IDUG, SHARE, DAMA Symposium and Oracle World. He has spoken at events on 4 continents
(North America, Europe, Asia, and Australia).

Mullins Consulting, Inc.
http://www.mullinsconsulting.com

(281)	494-6153	

	

©	2017,	Mullins	Consulting,	Inc.	

http://www.thedatabasesite.com/
http://www.dbta.com/
http://www.idug.org/
http://www.share.org/
http://www.mullinsconsulting.com

	scalability
	elasticity
	vertical
	horizontal

