
 Craig S. Mullins 
Return to Home Page

April 2001
 

DB2 Table Space Options

By Craig S. Mullins



Although DB2 data is accessed at the table
level,
those skilled in DB2 database design and
administration know that the
actual data is actually
stored in a structure known as a table space. Each
table
space correlates to one or more individual
physical VSAM data sets that are used
to house the
actual DB2 data. When designing DB2 databases,
DBAs can choose from
three types of table spaces,
each one useful in different circumstances. The
three
types of table spaces are:

Simple table spaces
Segmented table spaces
Partitioned table spaces

http://www.craigsmullins.com/


In general, the predominant table space type to
use for
most applications is the segmented table space.
Segmented table spaces
provide a good combination
of features that mix ease of use and setup with
performance and functionality. Many organizations
adhere to standards stating
that new DB2 table spaces
should be segmented table spaces unless a
compelling
reason exits to choose one of the other
table space types. You should consider
using the other
types of DB2 table spaces in the following cases:

Use partitioned table spaces when you wish to
encourage parallelism. Although DB2 can and will
use parallel access
techniques for non-partitioned
table spaces, partitioning data helps DB2
exploit
parallelism.
Consider using partitioned table spaces when
the
amount of data to be stored is very large (more
than 1 million pages).
You will have more control
over the placement of data in separate underlying
data sets using partitioned table spaces. This is
often a concern with
larger DB2 tables.
Use partitioned table spaces to reduce utility
processing time and decrease contention. It is
possible to execute DB2
utilities against single
partitions without impacting concurrent access to
data in other partitions. Furthermore, the utilities



will run faster against
a single partition than
against the entire table space and you will have
more control over driving your utility workload. For
example, you may not
have sufficient time in the
batch window to run a REORG of a four million
page segmented table space, but you might have
the time to run a REORG of
one partition of that
table space nightly. With four partitions of one
million pages (or perhaps more partitions
containing even fewer pages) you
may be able to
REORG one partition a night.
Implement partitioned table spaces to improve
data availability. For example, if the data is
partitioned by region, the
partitions for the
Eastern, Southern, and Northern regions can be
made
available while the Western region partition
is being reorganized.
Use partitioned table spaces to improve
recoverability. Once again, consider the
ramifications if the data is
partitioned by region. If
an error impacts data for the Eastern region only,
then only the Eastern partition needs to be
recovered. The Southern,
Northern, and Western
regions can remain online, because they are not



impacted by the problem in the Eastern region’s
data.
Consider partitioned table spaces to isolate
specific data areas in dedicated data sets. If there
are specific data
“hot spots” that have higher data
modification and/or access activity,
you may be
able to improve application performance by
isolating the “hot
spot” into a single partition that
can be tuned for the specific type of
application
access.
Use a simple table space only when you need to
mix data from different tables on one page. Simple
table spaces will mix
data from each table
assigned to the table space on each table space
page. A
segmented table space will not because
each segment in the segmented table
space is
assigned to a single table. If you have two tables
that are very
frequently joined you might consider
loading them into a single simple table
space,
ensuring that each row loaded from the first table
is immediately
followed by all of the rows from the
second table that will be joined to the
first table.
This can minimize I/O for retrieval. However, DB2
will not
maintain this ordering when the data is



changed, so this approach is
generally useful only
for static data.

Partitioning Considerations

DB2 can handle up to 254
partitions per table space.
The actual limit on number of partitions depends on
the
DSSIZE of the table space. Large table spaces are
those which specify the
LARGE parameter or have a
DSSIZE greater than 4GB. The LARGE parameter was
introduced with V5; DSSIZE with V6. A large table
space can have from 1 to 254
partitions. Non-large
table spaces are limited to no more than 64 partitions,
as
are any table spaces created in a version prior to
DB2 V5. 

For non-LARGE partitioned table
spaces, the number
of partitions impacts the maximum size of the data set
partition as follows:

Number of Partitions           
Maximum Data Set Size

   1 to 16                                        
4 GB

   17 to 32                                      
2 GB

   33 to 64                                      
1 GB

Keep these limitations in mind
as you design your
partitioned table spaces.



As a general rule of thumb try
to define table space
partitions such that no one partition is more than 20
percent larger than the next largest partition. This
provides even growth, which
eases DASD monitoring
and provides approximately even data access
requirements
and utility processing times across
partitions. This is not a hard-and-fast rule
though,
especially when dealing with “hot spots.” The “hot spot”
partition may be much smaller than the other partitions
going against the idea
of maintaining evenly distributed
partitions. This is okay.

Deciding
to use a partitioned table space is not as
simple as merely determining the size
of the table. In
the early days of DB2, size was the primary
consideration for
choosing a partitioned table space.
However, as DB2 has matured and the
applications
written using DB2 have become modernized,
additional considerations
will impact your partitioning
decisions. Application-level details, such as data
contention, performance requirements, degree of
parallelism, and the volume of
updates to columns in
the partitioning index must factor into the decision to
use partitioned table spaces.

Sometimes designers try to
avoid partitioned table
spaces by dividing a table into multiple tables, each
with its own table space. This is not wise. Never
attempt to avoid a partitioned
table space by
implementing several smaller table spaces, each
containing a
subset of the total amount of data. When
proceeding in this manner, the designer
usually places



separate tables into each of the smaller table spaces.
This
almost always is a bad design decision because it
introduces an uncontrolled and
unneeded
denormalization. Furthermore, when data that logically
belongs in one
table is separated into multiple tables,
SQL operations to access the data as a
logical whole
are made needlessly complex. One example of this
complexity is the
difficulty in enforcing unique keys
across multiple tables. Although partitioned
table
spaces can introduce additional complexities into your
environment, these
complexities never outweigh those
introduced by mimicking partitioning with
several
smaller, identical table spaces. To clarify why this idea
is bad,
consider these two different ways of
implementing a three “partition”
solution:

     
The first, recommended way is to create the
table in a single partitioned
table space with
three partitions as follows:

 

CREATE DB DB_SAMP;

CREATE
TABLESPACE TS_SAMP IN DB_SAMP
      
ERASE NO NUMPARTS 3
      
(PART 1
       
USING STOGROUP SG_SAMP1
       
PRIQTY 2000   SECQTY 50
       
COMPRESS NO,
 
       
PART 2



       
USING STOGROUP SG_SAMP2
       
PRIQTY 4000   SECQTY 150
       
COMPRESS YES,
 
       
PART 3
       
USING STOGROUP SG_SAMP3
       
PRIQTY 1000
       
SECQTY 50
       
COMPRESS YES)
 
      
LOCKSIZE PAGE   BUFFERPOOL BP1   CLOSE
NO;

CREATE TABLE TB_SAMP . . . IN
DB_SAMP.TS_SAMP;

    
The second, ill-advised way is to create three
table spaces each with its
own table as follows:

 

CREATE DB DB_SAMP;

CREATE
TABLESPACE TS_SAMP1 IN DB_SAMP
      
USING STOGROUP SG_SAMP1
      
PRIQTY 2000   SECQTY 50
      
ERASE NO COMPRESS NO
      
LOCKSIZE PAGE   BUFFERPOOL BP1   CLOSE
NO;
 
CREATE
TABLESPACE TS_SAMP2 IN DB_SAMP
      
USING STOGROUP SG_SAMP2



      
PRIQTY 4000   SECQTY 150
      
ERASE NO COMPRESS YES
      
LOCKSIZE PAGE   BUFFERPOOL BP1   CLOSE
NO;
 
CREATE
TABLESPACE TS_SAMP3 IN DB_SAMP
      
USING STOGROUP SG_SAMP3
      
PRIQTY 1000
      
SECQTY 50
      
ERASE NO COMPRESS YES
      
LOCKSIZE PAGE   BUFFERPOOL BP1   CLOSE
NO;
 

CREATE TABLE TB_SAMP1 . . . IN
DB_SAMP.TS_SAMP1;

CREATE TABLE TB_SAMP2 . . . IN
DB_SAMP.TS_SAMP2;

CREATE TABLE TB_SAMP3 . . . IN
DB_SAMP.TS_SAMP3;

Now
consider how difficult it would be to retrieve data
in the second implementation
if you did not know which
“partition” the data resides in, or if the data
could
reside in multiple partitions.

Using
the first example a simple SELECT will work.

SELECT
*
FROM
TB_SAMP



WHERE
COL1 = :HOST-VARIABLE;

In
the second example, a UNION is required.

SELECT
*
FROM
TB_SAMP1
WHERE
COL1 = :HOST-VARIABLE
UNION
ALL
SELECT
*
FROM
TB_SAMP2
WHERE
COL1 = :HOST-VARIABLE
UNION
ALL
SELECT
*
FROM
TB_SAMP3
WHERE
COL1 = :HOST-VARIABLE;

If
other tables need to be joined the “solution” becomes
even more complex.
Likewise if data must be updated,
inserted, or deleted and you do not know which
“partition” contains the impacted data. The bottom line:
avoid bypassing DB2
partitioning using your own
pseudo-partitions.

Partitioning Pros and Cons

Before
deciding to partition a table space, weigh the
pros and cons. Consult the
following list of advantages
and disadvantages before implementation:

Advantages
of a partitioned table space:



     
Each partition can be placed on a different
DASD volume to increase
access efficiency.

     
Partitioned table spaces are the only type of
table space that can
hold more than 64GB of
data (the maximum size of simple and
segmented table
spaces). A partitioned table
space with extended addressability (EA-
enabled)
can hold up to 16 terabytes of data.
Without being EA-enabled a partitioned
table
space can store up to about 1 TB of data.

     
Start and stop commands can be issued at the
partition level. By
stopping only specific
partitions, the remaining partitions are available
to
be accessed thereby promoting higher
availability.

     
Free space (PCTFREE and FREEPAGE) can
be specified at the partition
level enabling the
DBA to isolate data “hot spots” to a specific
partition and tune accordingly.

     
Partitioning can optimize Query I/O, CPU, and
Sysplex parallelism by
removing disk
contention as an issue because partitions can
be spread out
across multiple devices.

     
Table space scans on partitioned table spaces
can skip partitions
that are excluded based on



the query predicates. Skipping entire partitions
can improve overall query performance for
table space scans because less
data needs to
be accessed.

     
The clustering index used for partitioning can
be set up to decrease
data contention. For
example, if the table space will be partitioned
by
DEPT, each department (or range of
compatible departments) could be placed
in
separate partitions. Each department is in a
discrete physical data set,
thereby reducing
inter-departmental contention due to multiple
departments
coexisting on the same data page.
Note that contention remains for data in
non-
partitioned indexes (although this contention
has been significantly
reduced by in recent
versions of DB2).

     
DB2 creates a separate compression
dictionary for each table space
partition.
Multiple dictionaries tend to cause better overall
compression
ratios. In addition, it is more likely
that the partition-level compression
dictionaries
can be rebuilt more frequently than non-
partitioned
dictionaries. Frequent rebuilding of
the compression dictionary can lead to
a better
overall compression ratio.       

     
The REORG, COPY, and RECOVER utilities
can execute on table spaces at
the partition



level. If these utilities are set to execute on
partitions
instead of on the entire table space,
valuable time can be saved by
processing only
the partitions that need to be reorganized,
copied, or
recovered. Partition independence
and resource serialization further
increase the
availability of partitions during utility processing.

Disadvantages
of a partitioned table space:

     
Only one table can be defined in a partitioned
table space. This is
not necessarily a
disadvantage because most DBAs follow a
one-table-per-table-space rule.

     
The columns of the partitioning index cannot
be updated. To change a
value in one of these
columns, you must delete the row and then
reinsert it
with the new values.

     
The range of key values for which data will be
inserted into the
table must be known and
stable before you create the partitioning index.
To
define a partition, a range of values must be
hard-coded into the
partitioning index definition.
These ranges will be used to distribute the
data  throughout the partitions.
If you provide a
stop-gap partition to catch all the values lower
(or
higher) than the defined range, monitor that
partition to ensure that it
does not grow



dramatically or cause performance problems if
it is smaller or
larger than most other partitions.

     
After you define the method of partitioning, the
only way to change
it is to ALTER the
partitioning index to change the LIMITKEY
values and
reorganize any impacted partitions.
Prior to V6 you had to drop and redefine
both
the partitioning index and table space to
change LIMITKEY
specifications.

In
general, partitioned table spaces are becoming
more useful. You might even want
to consider using
partitioning for most table spaces (instead of
segmented),
especially if parallelism is an issue. At
least, consider partitioning table
spaces that are
accessed in a read only manner by long-running batch
programs.
Of course, very small table spaces are
rarely viable candidates for
partitioning, even with
DB2’s advanced I/O, CPU, and Sysplex parallelism
features. This is true because the smaller the amount
of data to access, the
more difficult it is to break it into
pieces large enough such that concurrent,
parallel
processing will be helpful.

When
using partitioned table spaces, try to place each
partition of the same
partitioned table space on
separate DASD volumes. Failure to do so can
negatively affect the performance of query parallelism
performed against those
partitions. Disk drive head
contention will occur because concurrent access is
being performed on separate partitions that co-exist on



the same device. Of
course, with some of the newer
storage devices, such as the ESS Shark hardware
from IBM, data set placement is a non-issue because
of the way in which data is
physically stored on the
device.

Summary

DB2
provides three different types of table spaces,
each of which has its own
distinct set of advantages
and disadvantages for use depending upon the
situation. As a DBA you should understand the
implementation details of each
type of table space and
be prepared to choose the right type of table space for
each situation.

 

From DB2 Update (Xephon) April 2001.

© 2001 Craig S. Mullins, All rights reserved.
Home.   

http://www.craigsmullins.com/

